Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein

Abstract

RNA interference (RNAi) is a conserved sequence-specific gene regulatory mechanism1,2,3 mediated by the RNA-induced silencing complex (RISC), which is composed of a single-stranded guide RNA and an Argonaute protein. The PIWI domain, a highly conserved motif within Argonaute, has been shown to adopt an RNase H fold4,5 critical for the endonuclease cleavage activity of RISC4,5,6. Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stranded RNA, thereby identifying the binding pocket for guide-strand 5′-end recognition and providing insight into guide-strand-mediated messenger RNA target recognition. The phosphorylated 5′ end of the guide RNA is anchored within a highly conserved basic pocket, supplemented by the carboxy-terminal carboxylate and a bound divalent cation. The first nucleotide from the 5′ end of the guide RNA is unpaired and stacks over a conserved tyrosine residue, whereas successive nucleotides form a four-base-pair RNA duplex. Mutation of the corresponding amino acids that contact the 5′ phosphate in human Ago2 resulted in attenuated mRNA cleavage activity. Our structure of the Piwi–RNA complex, and that determined elsewhere7, provide direct support for the 5′ region of the guide RNA serving as a nucleation site for pairing with target mRNA and for a fixed distance separating the RISC-mediated mRNA cleavage site from the anchored 5′ end of the guide RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the A. fulgidus Piwi–RNA complex.
Figure 2: The 5′-phosphate-binding site in the A. fulgidus Piwi–RNA complex.
Figure 3: Mutation studies of conserved 5′-phosphate-binding residues in A. fulgidus Piwi protein and human Ago2 protein.
Figure 4: Model of A. fulgidus Piwi protein (AfPiwi) bound to an 18-base-pair RNA duplex with 5′-phosphorylated single-nucleotide overhangs.

Similar content being viewed by others

References

  1. Hutvagner, G. & Zamore, P. D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232 (2002)

    Article  CAS  Google Scholar 

  2. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Meister, G. & Tuschl, T. Mechanism of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737 (2004)

    Article  CAS  Google Scholar 

  6. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI-domain–siRNA guide complex. Nature doi:10.1038/nature03462 (this issue)

  8. Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474 (2003)

    Article  ADS  Google Scholar 

  9. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol. 10, 1026–1032 (2003)

    Article  CAS  Google Scholar 

  11. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol 11, 576–577 (2004)

    Article  CAS  Google Scholar 

  12. Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Nykänen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001)

    Article  Google Scholar 

  14. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant Armitage. Cell 116, 831–841 (2004)

    Article  CAS  Google Scholar 

  15. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001)

    Article  CAS  Google Scholar 

  17. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNA and siRNAs. Mol. Cell 15, 185–197 (2004)

    Article  CAS  Google Scholar 

  18. Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003)

    Article  CAS  Google Scholar 

  19. Mallory, A. C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–3364 (2004)

    Article  CAS  Google Scholar 

  20. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  Google Scholar 

  21. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004)

    Article  CAS  Google Scholar 

  22. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004)

    Article  CAS  Google Scholar 

  23. Yang, W. & Steitz, T. A. Recombining the structures of HIV integrase, RuvC and RNase H. Structure 3, 131–134 (1995)

    Article  CAS  Google Scholar 

  24. Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002)

    Article  CAS  Google Scholar 

  26. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Collaborative Computational Project no. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, G. J. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  29. Wong, I. & Lohman, T. M. A double-filter method for nitrocellulose-filter binding: Application to protein-nucleic acid interactions. Proc. Natl Acad. Sci. USA 90, 5428–5432 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Sagar, M. B., Lucast, L. & Doudna, J. A. Conserved but nonessential interaction of SRP RNA with translation factor EF-G. RNA 10, 772–778 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Saxena and personnel at synchrotron beamline X26C of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, for their assistance. Use of the NSLS beamline is supported by the US Department of Energy, Basic Energy Sciences, Office of Science. D.J.P. is supported by funds from the Abby Rockefeller Mauze Trust and the Dewitt Wallace and Maloris Foundations, and T.T. is supported by a National Institutes of Health grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinshaw J. Patel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

Contains details of Supplementary Methods used, Supplementary Figures S1 and S2 and accompanying legends. It also contains Supplementary Table S1 and additional references. (PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, JB., Yuan, YR., Meister, G. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005). https://doi.org/10.1038/nature03514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03514

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing