Spatial quantum noise interferometry in expanding ultracold atom clouds

Abstract

In a pioneering experiment1, Hanbury Brown and Twiss (HBT) demonstrated that noise correlations could be used to probe the properties of a (bosonic) particle source through quantum statistics; the effect relies on quantum interference between possible detection paths for two indistinguishable particles. HBT correlations—together with their fermionic counterparts2,3,4—find numerous applications, ranging from quantum optics5 to nuclear and elementary particle physics6. Spatial HBT interferometry has been suggested7 as a means to probe hidden order in strongly correlated phases of ultracold atoms. Here we report such a measurement on the Mott insulator8,9,10 phase of a rubidium Bose gas as it is released from an optical lattice trap. We show that strong periodic quantum correlations exist between density fluctuations in the expanding atom cloud. These spatial correlations reflect the underlying ordering in the lattice, and find a natural interpretation in terms of a multiple-wave HBT interference effect. The method should provide a useful tool for identifying complex quantum phases of ultracold bosonic and fermionic atoms11,12,13,14,15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of the atom detection scheme and the origin of quantum correlations.
Figure 2: Single shot absorption image including quantum fluctuations and the associated spatial correlation function.
Figure 3: Correlation signal versus expansion time and atom number.

References

  1. 1

    Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    ADS  Article  Google Scholar 

  2. 2

    Henny, M. et al. The fermionic Hanbury Brown and Twiss experiment. Science 284, 296–298 (1999)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Oliver, W. D., Kim, J., Liu, R. C. & Yamamoto, Y. Hanbury Brown and Twiss-type experiment with electrons. Science 284, 299–301 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kiesel, H., Renz, A. & Hasselbach, F. Observation of Hanbury Brown-Twiss anticorrelations for free electrons. Nature 418, 392–394 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bachor, H. A. & Ralph, T. C. A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  6. 6

    Baym, G. The physics of Hanbury Brown-Twiss intensity interferometry: From stars to nuclear collisions. Act. Phys. Pol. B 29, 1839–1884 (1998)

    CAS  Google Scholar 

  7. 7

    Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004)

    ADS  Article  Google Scholar 

  8. 8

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kuklov, A. & Svistunov, B. Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Duan, L.-M., Demler, E. & Lukin, M. Controlling spin exchange interactions of ultracold atoms in an optical lattice. Phys. Rev. Lett. 91, 090402 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Lewenstein, M., Santos, L., Baranov, M. A. & Fehrmann, H. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 92, 050401 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Roth, R. & Burnett, K. Quantum phases of atomic boson-fermion mixtures in optical lattices. Phys. Rev. A 69, 021601(R) (2004)

    ADS  Article  Google Scholar 

  16. 16

    Jurczak, C. et al. Atomic transport in an optical lattice: An investigation through polarization-selective intensity correlations. Phys. Rev. Lett. 77, 1727–1730 (1996)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Yasuda, M. & Shimizu, F. Observation of two-atom correlation of an ultracold neon atomic beam. Phys. Rev. Lett. 77, 3090–3093 (1996)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kagan, Y., Svistunov, B. V. & Shlyapnikov, G. V. Effect of Bose condensation on inelastic processes in gases. Sov. Phys. JETP Lett. 42, 209–212 (1985)

    ADS  Google Scholar 

  19. 19

    Burt, E. A. et al. Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay. Phys. Rev. Lett. 79, 337–340 (1997)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Laburthe-Tolra, B. et al. Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas. Phys. Rev. Lett. 92, 190401 (2004)

    CAS  Article  Google Scholar 

  21. 21

    Grondalski, J., Alsing, P. M. & Deutsch, I. H. Spatial correlation diagnostics for atoms in optical lattices. Opt. Exp. 5, 249–261 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kolovsky, A. R. Interference of cold atoms released from an optical lattice. Europhys. Lett. 68, 330–336 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bach, R. & Rzazewski, K. Correlation functions of cold bosons in an optical lattice. Phys. Rev. A 70, 063622 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. M. in Proc. Int. School of Physics “Enrico Fermi” (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 67–176 (IOS Press, Amsterdam, 1999)

    Google Scholar 

  25. 25

    Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hadzibabic, Z., Stock, S., Battelier, B., Bretin, V. & Dalibard, J. Interference of an array of independent Bose-Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004)

    ADS  Article  Google Scholar 

  27. 27

    Batrouni, G. G. et al. Mott domains of bosons confined on optical lattices. Phys. Rev. Lett. 89, 117203 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28

    Naraschewski, M. & Glauber, R. Spatial coherence and density correlations of trapped Bose gases. Phys. Rev. A 59, 4595–4607 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Greiner, M., Regal, C. A., Stewart, J. T. & Jin, D. S. Probing pair-correlated fermionic atoms through correlations in atom shot noise. Preprint at http://arxiv.org/cond-mat/0502411 (2005).

  30. 30

    Sheshadri, K., Krishnamurthy, H. R., Pandit, R. & Ramakrishnan, T. V. Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA. Europhys. Lett. 22, 257–263 (1993)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with E. Altman and M. Greiner, as well as financial support by the DFG, AFOSR and the EU under a Marie-Curie Fellowship (F.G.) and a Marie-Curie Excellence grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Immanuel Bloch.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fölling, S., Gerbier, F., Widera, A. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005). https://doi.org/10.1038/nature03500

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.