Active out-of-sequence thrust faulting in the central Nepalese Himalaya


Recent convergence between India and Eurasia is commonly assumed to be accommodated mainly along a single fault—the Main Himalayan Thrust (MHT)—which reaches the surface in the Siwalik Hills of southern Nepal1,2,3. Although this model is consistent with geodetic4,5, geomorphic6 and microseismic data7, an alternative model incorporating slip on more northerly surface faults has been proposed to be consistent with these data as well8,9,10. Here we present in situ cosmogenic 10Be data indicating a fourfold increase in millennial timescale erosion rates occurring over a distance of less than 2 km in central Nepal, delineating for the first time an active thrust fault nearly 100 km north of the surface expression of the MHT. These data challenge the view that rock uplift gradients in central Nepal reflect only passive transport over a ramp in the MHT. Instead, when combined with previously reported 40Ar–39Ar data9, our results indicate persistent exhumation above deep-seated, surface-breaking structures at the foot of the high Himalaya. These results suggest that strong dynamic interactions between climate, erosion and tectonics have maintained a locus of active deformation well to the north of the Himalayan deformation front.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geological setting.
Figure 2: Sampling locations and study area physiography.
Figure 3: Erosion rate and cooling-age data.


  1. 1

    Cattin, R. & Avouac, J. P. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J. Geophys. Res. 105, 13389–13407 (2000)

    ADS  Article  Google Scholar 

  2. 2

    Lave, J. & Avouac, J. P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. 105, 5735–5770 (2000)

    ADS  Article  Google Scholar 

  3. 3

    Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lave, J. & Massot, J. P. Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys. Res. Lett. 22, 751–754 (1995)

    ADS  Article  Google Scholar 

  4. 4

    Jackson, M. & Bilham, R. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J. Geophys. Res. 99, 13897–13912 (1994)

    ADS  Article  Google Scholar 

  5. 5

    Bilham, R. et al. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386, 61–64 (1997)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lave, J. & Avouac, J. P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. 106, 26561–26591 (2001)

    ADS  Article  Google Scholar 

  7. 7

    Pandey, M. R. et al. Seismotectonics of the Nepal Himalaya from a local seismic network. J. Asian Earth Sci. 17, 703–712 (1999)

    ADS  Article  Google Scholar 

  8. 8

    Catlos, E. J. et al. Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J. Geophys. Res. 106, 16177–16204 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Wobus, C. W., Hodges, K. V. & Whipple, K. X. Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31, 861–864 (2003)

    ADS  Article  Google Scholar 

  10. 10

    Hodges, K., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. Quaternary deformation, river steepening and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett. 220, 379–389 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hodges, K. V. Tectonics of the Himalaya and southern Tibet from two perspectives. GSA Bull. 112, 324–350 (2000)

    CAS  Article  Google Scholar 

  12. 12

    DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20, 487–509 (2001)

    ADS  Article  Google Scholar 

  13. 13

    Copeland, P. et al. An early Pliocene thermal disturbance of the Main Central Thrust, central Nepal; implications for Himalayan tectonics. J. Geophys. Res. B 96, 8475–8500 (1991)

    ADS  Article  Google Scholar 

  14. 14

    Burbank, D. W. et al. Decoupling of erosion and climate in the Himalaya. Nature 426, 652–655 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bierman, P. R. & Nichols, K. K. Rock to sediment-slope to sea with 10Be-rates of landscape change. Annu. Rev. Earth Planet. Sci. 32, 215–255 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M. & Yiou, F. Denudation rates determined from the accumulation of in-situ produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth Planet. Sci. Lett. 129, 193–202 (1995)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26Al and 10Be in alluvial sediment. Geology 28, 803–806 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Schaller, M., von Blanckenburg, F., Hovius, N. & Kubik, P. W. Large-scale erosion rates from in-situ produced cosmogenic nuclides in European river sediments. Earth Planet. Sci. Lett. 188, 441–458 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Vance, D., Bickle, M., Ivy-Ochs, S. & Kubik, P. W. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories in river sediments. Earth Planet. Sci. Lett. 206, 273–288 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Burbank, D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Hillslope evolution by nonlinear, slope-dependent transport: steady state morphology and equilibrium adjustment timescales. J. Geophys. Res. 106, 16499–16513 (2001)

    ADS  Article  Google Scholar 

  22. 22

    Bierman, P. & Steig, E. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf. Processes Landforms 21, 125–139 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Granger, D. E., Kirchner, J. W. & Finkel, R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J. Geol. 104, 249–257 (1996)

    ADS  Article  Google Scholar 

  24. 24

    Niemi, N. A., Oskin, M. E. & Burbank, D. A numerical simulation of the effects of mass-wasting on cosmogenically determined erosion rates. Eos 85 (Fall Meet. Suppl.), Abstract H51C–1157 (2004)

  25. 25

    Putkonen, J. Continuous snow and rain data at 500 to 4400 m altitude near Annapurna, Nepal, 1999–2001. Arct. Antarct. Alpine Res. 36, 244–248 (2004)

    Article  Google Scholar 

  26. 26

    Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hodges, K. V., Hurtado, J. M. & Whipple, K. X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics 20, 799–809 (2001)

    ADS  Article  Google Scholar 

Download references


We thank D. Burbank and P. Bierman for constructive reviews, which greatly improved the quality of the original manuscript, R. Finkel at LLNL for accommodating our samples at short notice, and B. Crosby, K. Ruhl, T. Schildgen, N. Wobus and Himalayan Experience for field assistance. The work was funded by NSF and NSF Continental Dynamics.

Author information



Corresponding author

Correspondence to Cameron Wobus.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wobus, C., Heimsath, A., Whipple, K. et al. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008–1011 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing