Friction enhances elasticity in granular solids


For years, engineers have used elastic and plastic models to describe the properties of granular solids, such as sand piles and grains in silos1,2,3. However, there are theoretical4,5,6 and experimental7,8,9,10,11,12,13,14 results that challenge this approach. Specifically, it has been claimed4,5,6 that stress in granular solids propagates in a manner described by wave-like (hyperbolic) equations, rather than the elliptic equations of static elasticity. Here we report numerical simulations of the response of a two-dimensional granular slab to an external load, revealing that both approaches are valid—albeit on different length scales. For small systems that can be considered mesoscopic on the scale of the grains, a hyperbolic-like, strongly anisotropic response is expected. However, in large systems (those typically considered by engineers), the response is closer to that predicted by traditional isotropic elasticity models. Static friction, often ignored in simple models, plays a key role: it increases the elastic range and renders the response more isotropic, even beyond this range.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Force distribution and linearity below a lattice of disks.
Figure 2: The changes (the teardrop) in the contact network induced by an applied force, for different values of Fext and µ.
Figure 3: Effects of friction.
Figure 4: Effects of disorder and a phase diagram.


  1. 1

    Nedderman, R. M. Statics and Kinematics of Granular Materials (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  2. 2

    Savage, S. B. in Physics of Dry Granular Media (eds Herrmann, H. J., Hovi, J. P. & Luding, S.) 25–95 (NATO ASI Series, Kluwer, Dordrecht, 1998)

    Google Scholar 

  3. 3

    Jackson, R. in Theory of Dispersed Multiphase Flow (ed. Meyer, R. E.) 291–337 (Academic, New York, 1983)

    Google Scholar 

  4. 4

    Wittmer, J. P., Claudin, P., Cates, M. E. & Bouchaud, J.-P. An explanation for the central stress minimum in sand piles. Nature 382, 336–338 (1996)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bouchaud, J.-P., Claudin, P., Levine, D. & Otto, M. Force chain splitting in granular materials: a mechanism for large-scale pseudo-elastic behaviour. Eur. Phys. J. E 4, 451–457 (2001)

    CAS  Article  Google Scholar 

  6. 6

    Tkachenko, A. V. & Witten, T. A. Stress propagation through frictionless granular material. Phys. Rev. E 60, 687–696 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Drescher, A. & de Josselin de Jong, G. Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337–351 (1972)

    ADS  Article  Google Scholar 

  8. 8

    Geng, J. et al. Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Geng, J., Reydellet, G., Clément, E. & Behringer, R. P. Green's function measurements of force transmission in 2D granular materials. Physica D 182, 274–303 (2003)

    ADS  Article  Google Scholar 

  10. 10

    Mueggenburg, N. W., Jaeger, H. M. & Nagel, S. R. Stress transmission through three-dimensional ordered granular arrays. Phys. Rev. E 66, 031304 (2002)

    ADS  Article  Google Scholar 

  11. 11

    Moukarzel, C. F., Pacheco-Martinez, H., Ruiz-Suarez, J. C. & Vidales, A. M. Static response in disk packings. Granular Matter 6, 61–66 (2004)

    CAS  Article  Google Scholar 

  12. 12

    da Silva, M. & Rajchenbach, J. Stress transmission through a model system of cohesionless elastic grains. Nature 406, 708–710 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  13. 13

    Smid, J. & Novosad, J. Pressure distribution under heaped bulk solids. In Proc. 1981 Powtech Conf., Institution of Chemical Engineers Symp. 63, D3/V/1–12 (1981).

  14. 14

    Brockbank, R., Huntley, J. M. & Ball, R. C. Contact force distribution beneath a three-dimensional granular pile. J. Phys. II 7, 1521–1532 (1997)

    CAS  Google Scholar 

  15. 15

    Vanel, L., Howell, D., Clark, D., Behringer, R. P. & Clément, E. Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60, R5040–R5043 (1999)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Serero, D., Reydellet, G., Claudin, P., Clément, E. & Levine, D. Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur. Phys. J. E 6, 169–179 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Goldenberg, C. & Goldhirsch, I. Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89, 084302 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Reydellet, G. & Clément, E. Green's function probe of a static granular piling. Phys. Rev. Lett. 86, 3308–3311 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  20. 20

    Otto, M., Bouchaud, J.-P., Claudin, P. & Socolar, J. E. S. Anisotropy in granular media: classical elasticity and directed-force chain network. Phys. Rev. E 67, 031302 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Duffy, J. & Mindlin, R. D. Stress–strain relations and vibrations of a granular medium. J. Appl. Mech. 24, 585–593 (1957)

    MathSciNet  Google Scholar 

  22. 22

    Bathurst, R. J. & Rothenburg, L. Micromechanical aspects of isotropic granular assemblies with linear contact interactions. J. Appl. Mech. 55, 17–23 (1988)

    ADS  Article  Google Scholar 

  23. 23

    Chang, C. S. & Ma, L. Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29, 1001–1018 (1992)

    Article  Google Scholar 

  24. 24

    Gay, C. & da Silveira, R. Anisotropic elastic theory of preloaded granular media. Europhys. Lett. 68, 51–57 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    da Silveira, R., Vidalenc, G. & Gay, C. Stress propagation in two dimensional frictional granular matter. Preprint at 〈〉 (2002).

  26. 26

    Johnson, K. L. Contact Mechanics 220 (Cambridge Univ. Press, Cambridge, 1985)

    Google Scholar 

  27. 27

    Tournat, V. Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy. Phys. Rev. Lett. 92, 085502 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references


We thank A. P. F. Atman, R. P. Behringer, P. Claudin, E. Clément, J. Geng, N. Mueggenburg, M. van Hecke, W. van Saarloos and T. A. Witten for discussions. This work was supported by the Israel Science Foundation (ISF) and the US-Israel Binational Science Foundation (BSF).

Author information



Corresponding author

Correspondence to I. Goldhirsch.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldenberg, C., Goldhirsch, I. Friction enhances elasticity in granular solids. Nature 435, 188–191 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.