Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos


A striking feature of the body plan of a majority of animals is bilateral symmetry. Almost nothing is known about the mechanisms controlling the symmetrical arrangement of the left and right body sides during development. Here we report that blocking the production of retinoic acid (RA) in chicken embryos leads to a desynchronization of somite formation between the two embryonic sides, demonstrated by a shortened left segmented region. This defect is linked to a loss of coordination of the segmentation clock oscillations1. The lateralization of this defect led us to investigate the relation between somitogenesis and the left–right asymmetry machinery2,3 in RA-deficient embryos. Reversal of the situs in chick4,5 or mouse6 embryos lacking RA results in a reversal of the somitogenesis laterality defect. Our data indicate that RA is important in buffering the lateralizing influence of the left–right machinery, thus permitting synchronization of the development of the two embryonic sides.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Disulphiram blocks RA production and alters left–right coordination of the segmentation clock.
Figure 2: Asymmetry of somitogenesis in disulphiram-treated embryos.
Figure 3: Inversion of the situs leads to an inversion of the somitic defect in embryos lacking RA signalling.
Figure 4: Inversion of somitogenesis asymmetry in Raldh2-/-iv-/- mouse mutants showing situs inversion.


  1. Pourquie, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Raya, A. & Belmonte, J. C. Sequential transfer of left-right information during vertebrate embryo development. Curr. Opin. Genet. Dev. 14, 575–581 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Levin, M. Left-right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122, 3–25 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Levin, M. et al. Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. Dev. Biol. 189, 57–67 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Pagan-Westphal, S. M. & Tabin, C. J. The transfer of left-right positional information during chick embryogenesis. Cell 93, 25–35 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Brueckner, M., D'Eustachio, P. & Horwich, A. L. Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc. Natl Acad. Sci. USA 86, 5035–5038 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dubrulle, J. & Pourquie, O. Coupling segmentation to axis formation. Development 131, 5783–5793 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65–79 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Moreno, T. A. & Kintner, C. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev. Cell 6, 205–218 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Stratford, T., Horton, C. & Maden, M. Retinoic acid is required for the initiation of outgrowth in the chick limb bud. Curr. Biol. 6, 1124–1133 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Maden, M., Sonneveld, E., van der Saag, P. T. & Gale, E. The distribution of endogenous retinoic acid in the chick embryo: implications for developmental mechanisms. Development 125, 4133–4144 (1998)

    CAS  PubMed  Google Scholar 

  12. Vermot, J. et al. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308, 563–566 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Pourquie, O. & Tam, P. P. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev. Cell 1, 619–620 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Maden, M., Graham, A., Zile, M. & Gale, E. Abnormalities of somite development in the absence of retinoic acid. Int. J. Dev. Biol. 44, 151–159 (2000)

    CAS  PubMed  Google Scholar 

  15. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Dale, J. K. et al. Periodic Notch inhibition by Lunatic Fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Buchberger, A., Seidl, K., Klein, C., Eberhardt, H. & Arnold, H. H. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev. Biol. 199, 201–215 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Psychoyos, D. & Stern, C. D. Fates and migratory routes of primitive streak cells in the chick embryo. Development 122, 1523–1534 (1996)

    CAS  PubMed  Google Scholar 

  19. Piedra, M. E., Icardo, J. M., Albajar, M., Rodriguez-Rey, J. C. & Ros, M. A. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94, 319–324 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Meyers, E. N. & Martin, G. R. Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285, 403–406 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Raya, A. et al. Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev. 17, 1213–1218 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krebs, L. T. et al. Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev. 17, 1207–1212 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raya, A. et al. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427, 121–128 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kawakami, Y., Raya, Á., Marina Raya, R., Rodríguez-Esteban, C. & Izpisúa Belmonte, J. C. Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature doi:10.1038/nature03512 (this issue)

  25. Schubert, M., Holland, L. Z., Stokes, M. D. & Holland, N. D. Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tail bud: the evolution of somitogenesis in chordates. Dev. Biol. 240, 262–273 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951)

    Article  CAS  PubMed  Google Scholar 

  27. Chapman, S. C., Collignon, J., Schoenwolf, G. C. & Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Dev. Dyn. 220, 284–289 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Adachi, H. et al. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 13, 1589–1600 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank P. Chambon for his interest in this work; P. Dollé for discussions and for providing the Raldh2 mice; H. Hamada for providing the iv genotyping protocol; members of the Pourquié laboratory for sharing reagents and helpful discussions, especially T. Iimura for sharing his expertise with chick culture; B. Brede and P. Malapert for help with mouse genotyping; S. Esteban for artwork; and members of the Conaway and Workman laboratories, particularly J. Conaway and A. Paoletti for help with RP-HPLC, and J. Chen (on leave from University of Missouri – Kansas City) for help with the statistics. J.V. was supported by the Fondation pour la Recherche Médicale and by a Travelling Fellowship from the Company of Biologists and is on leave from IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France. Present work is supported by the Stowers Institute for Medical Research and by a grant from the NIH.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Olivier Pourquié.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Standard curve obtained by RP-HPLC after injection of different amounts of synthetic RA. Vertical bars represent the standard deviation. (JPG 103 kb)

Supplementary Figure S2

RA treatment rescues the somitogenesis asymmetry of disulphiram-treated embryos. (JPG 349 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vermot, J., Pourquié, O. Retinoic acid coordinates somitogenesis and left–right patterning in vertebrate embryos. Nature 435, 215–220 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing