Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

No high-mass protostars in the silhouette young stellar object M17-SO1


The birth of very massive stars is not well understood1,2,3, in contrast to the formation process of low-mass stars like our Sun4,5. It is not even clear that massive stars can form as single entities; rather, they might form through the mergers of smaller ones born in tight groups6,7. The recent claim of the discovery of a massive protostar in M17 (a nearby giant ionized region) forming through the same mechanism as low-mass stars8 has therefore generated considerable interest. Here we show that this protostar has an intermediate mass of only 2.5 to 8 solar masses (M), contrary to the earlier claim of 20M (ref. 8). The surrounding circumstellar envelope contains only 0.09M and a much more extended local molecular cloud has 4–9M.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Silhouette features of M17-SO1.
Figure 2: Emission features and illustration of M17-SO1.
Figure 3: 13CO 1–0 line images of M17-SO1.


  1. Yorke, H. W. & Sonnhalter, C. On the formation of massive stars. Astrophys. J. 569, 846–862 (2002)

    Article  ADS  Google Scholar 

  2. Wolfire, M. G. & Cassinelli, J. P. Conditions for the formation of massive stars. Astrophys. J. 319, 850–867 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Stahler, S. W., Palla, F. & Ho, P. T. P. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S.) 327–351 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  4. Mundy, L. G., Looney, L. W. & Welch, W. J. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S.) 355–376 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  5. Calvet, N., Hartmann, L. & Strom, S. E. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S.) 377–399 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  6. Bonnell, I. A., Bate, M. R. & Zinnecker, H. On the formation of massive stars. Mon. Not. R. Astron. Soc. 298, 93–102 (1998)

    Article  ADS  Google Scholar 

  7. Bonnell, I. A., Vine, S. G. & Bate, M. R. Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)

    Article  ADS  Google Scholar 

  8. Chini, R. et al. The formation of a massive protostar through the disk accretion of gas. Nature 429, 155–157 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Padgett, D. L. et al. Hubble space telescope/NICMOS imaging of disks and envelopes around very young stars. Astron. J. 117, 1490–1504 (1999)

    Article  ADS  Google Scholar 

  10. Felli, M., Massi, M. & Churchwell, E. A high-resolution study of M17 at 1.3, 2, 6, and 21 CM. Astron. Astrophys 136, 53–64 (1984)

    ADS  CAS  Google Scholar 

  11. Shuping, R. Y., Morris, M. & Bally, J. A new mid-infrared map of the BN/KL region using the Keck telescope. Astron. J. 128, 363–374 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Okamoto, Y. K. et al. High-resolution mid-infrared imaging and spectroscopic observations of a massive star forming region W51 IRS 2. Astrophys. J. 553, 254–266 (2001)

    Article  ADS  Google Scholar 

  13. Ohashi, N., Hayashi, M., Ho, P. T. P. & Momose, M. Interferometric imaging of IRAS 04368 + 2557 in the L1527 molecular cloud core: A dynamically infalling envelope with rotation. Astrophys. J. 475, 211–223 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Ohashi, N. et al. Rotation in the protostellar envelopes around IRAS 04169 + 2702 and IRAS 04365 + 2535: The size scale for dynamical collapse. Astrophys. J. 488, 317–329 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Park, S. & Kenyon, S. J. Extended near-infrared emission from candidate protostars in the Taurus-Auriga molecular cloud. Astron. J. 123, 3370–3379 (2002)

    Article  ADS  Google Scholar 

  16. Tamura, M., Gatley, I., Waller, W. & Werner, M. W. Two micron morphology of candidate protostars. Astrophys. J. 374, L25–L28 (1991)

    Article  ADS  Google Scholar 

  17. Thi, W. F. et al. H2 and CO emission from disks around T Tauri and Herbig Ae pre-main-sequence stars and from debris disks around young stars: Warm and cold circumstellar gas. Astrophys. J. 561, 1074–1094 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Jiang, Z. et al. Deep near-infrared survey toward the M17 region. Astrophys. J. 577, 245–259 (2002)

    Article  ADS  Google Scholar 

  19. Hanson, M. M., Howarth, I. D. & Conti, P. S. The young massive stellar objects of M17. Astrophys. J. 489, 698–718 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Nielbock, M., Chini, R., Jütte, M. & Manthey, E. High mass Class I sources in M 17. Astron. Astrophys. 377, 273–284 (2001)

    Article  ADS  Google Scholar 

  21. Hartmann, L. Accretion Processes in Star Formation (Cambridge Univ. Press, New York, 1998)

    Google Scholar 

  22. Wilson, C. D., Howe, J. E. & Balogh, M. L. The large-scale J = 3 → 2 and J = 2 → 1 CO emission from M17 and its implications for extragalactic CO observations. Astrophys. J. 517, 174–187 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Howe, J. E. et al. Extended [C I] and 13CO (5 → 4) emission in M17SW. Astrophys. J. 539, 137–141 (2000)

    Article  ADS  Google Scholar 

  24. Nakano, T., Hasegawa, T. & Norman, C. The mass of a star formed in a cloud core: Theory and its application to the Orion A cloud. Astrophys. J. 450, 183–195 (1995)

    Article  ADS  Google Scholar 

  25. Kobayashi, N. et al. IRCS: infrared camera and spectrograph for the Subaru Telescope. Proc. SPIE 4008, 1056–1066 (2000)

    Article  ADS  Google Scholar 

  26. Takami, H. et al. Performance of Subaru adaptive optics system and the scientific results. Proc. SPIE 4839, 21–31 (2003)

    Article  ADS  Google Scholar 

  27. Kataza, H. et al. COMICS: the cooled mid-infrared camera and spectrometer for the Subaru telescope. Proc. SPIE 4008, 1144–1152 (2000)

    Article  ADS  Google Scholar 

  28. Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A. & van Langevelde, H. J. Envelope structure on 700 AU scales and the molecular outflows of low-mass young stellar objects. Astrophys. J. 502, 315–336 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Ohashi, N., Hayashi, M., Kawabe, R. & Ishiguro, M. The Nobeyama Millimeter Array survey of young stellar objects associated with the Taurus molecular cloud. Astrophys. J. 466, 317–337 (1996)

    Article  ADS  CAS  Google Scholar 

Download references


This Letter is based on data collected at the Subaru Telescope and the Nobeyama Radio Observatory, which are operated by the National Astronomical Observatory of Japan.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shigeyuki Sako.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sako, S., Yamashita, T., Kataza, H. et al. No high-mass protostars in the silhouette young stellar object M17-SO1. Nature 434, 995–998 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing