Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions

Abstract

Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation1,2,3,4. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules6,7,8,9,10, as well as to the higher abundance of 26Al in CAIs11; both observations indicate that CAIs pre-date chondrules by 1–3 million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Δ17O ≈ - 1‰ to -5‰). Spinel and diopside in the CAI cores are 16O-rich (Δ17O up to -20‰), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Δ17O = -8‰ to 2‰). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 ± 1.4) × 10-6 and <1.2 × 10-6. We conclude that these CAIs had chondrule material added to them during a re-melting episode 2 Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 × 10-5.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Type C CAI fragment ABC from Allende.
Figure 2: Oxygen isotopic compositions of chondrule-bearing CAIs from Allende.
Figure 3: Al-Mg evolution diagram for the type C CAIs ABC and TS26.
Figure 4: Type C CAI TS26 from Allende.

References

  1. 1

    MacPherson, G. J. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) Vol. 1, Meteorites, Comets and Planets (ed. Davis, A. M.) 201–246 (Elsevier-Pergamon, Oxford, 2003).

  2. 2

    Desch, S. J. & Connolly, H. C. A model of the thermal processing of particles in the solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207 (2002)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Amelin, Y., Krot, A. N. & Twelker, E. Pb isotopic age of the CB chondrite Gujba, and the duration of the chondrule formation interval. Geochim. Cosmochim. Acta 68, abstr. E958 (2004)

  5. 5

    Itoh, S. & Yurimoto, H. Contemporaneous formation of chondrules and refractory inclusions in the early Solar System. Nature 423, 728–731 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Krot, A. N. & Keil, K. Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between Ca, Al-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 91–111 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Krot, A. N., Hutcheon, I. D. & Keil, K. Anorthite-rich chondrules in the reduced CV chondrites: evidence for complex formation history and genetic links between CAIs and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 155–182 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Krot, A. N. et al. Ca,Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. Mineralogy and petrology. Geochim. Cosmochim. Acta 68, 2167–2184 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Maruyama, S., Yurimoto, H. & Sueno, S. Oxygen isotope evidence regarding the formation of spinel-bearing chondrules. Earth Planet. Sci. Lett. 169, 165–171 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Maruyama, S. & Yurimoto, H. Relationships among O, Mg isotopes and the petrography of two spinel-bearing chondrules. Geochim. Cosmochim. Acta 67, 3943–3957 (2003)

    ADS  CAS  Article  Google Scholar 

  11. 11

    McKeegan, K. D. & Davis, A. M. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) Vol. 1, Meteorites, Comets and Planets (ed. Davis, A. M.) 431–461 (Elsevier-Pergamon, Oxford, 2003).

  12. 12

    Grossman, L., Ebel, D. S. & Simon, S. B. Formation of refractory inclusions by evaporation of condensate precursors. Geochim. Cosmochim. Acta 66, 145–161 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wark, D. A. & Lovering, J. F. Marker events in the early solar system: Evidence from rims on Ca-Al-rich inclusions in carbonaceous chondrites. Proc. Lunar Planet. Sci. Conf. 8, 95–112 (1977)

    ADS  CAS  Google Scholar 

  14. 14

    Galy, A., Young, E. D., Ash, R. D. & O'Nions, R. K. The formation of chondrules at high gas pressures in the solar nebula. Science 290, 1751–1753 (2000)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Alexander, C. M. O'D. & Wang, J. Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation. Meteorit. Planet. Sci. 36, 419–428 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Scott, E. R. D. & Krot, A. N. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) Vol. 1, Meteorites, Comets and Planets (ed. Davis, A. M.) 143–200 (Elsevier-Pergamon, Oxford, 2003).

  17. 17

    Bizzarro, M., Baker, J. A. & Haack, H. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431, 275–278 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    MacDougall, J. D., Kerridge, J. F. & Phinney, D. Refractory ABC. Lunar Planet. Sci. 12, 643–645 (1981)

    ADS  Google Scholar 

  19. 19

    Wark, D. A. Plagioclase-rich inclusions in carbonaceous chondrite meteorites: Liquid condensates? Geochim. Cosmochim. Acta 51, 221–242 (1987)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Krot, A. N., McKeegan, K. D., Leshin, L. A., MacPherson, G. J. & Scott, E. R. D. Existence of an 16O-rich gaseous reservoir in the solar nebula. Science 295, 1051–1054 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Krot, A. N., Fagan, T. J., Yurimoto, H. & Petaev, M. I. Origin of low-Ca pyroxene in amoeboid olivine aggregates: Evidence from oxygen isotopic compositions. Geochim. Cosmochim. Acta (in the press).

  22. 22

    McKeegan, K. D. & Leshin, L. A. in Stable Isotope Geochemistry (eds Valley, J. W. & Cole, D. R.) 279–378 (Reviews in Mineralogy & Geochemistry, Vol. 43, Mineralogical Society of America, Washington DC, 2001).

  23. 23

    Yurimoto, H., Ito, M. & Nagasawa, H. Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas. Science 282, 1874–1877 (1998)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Nagashima, K., Yoshitake, M. & Yurimoto, H. in Workshop on “Chondrites and the Protoplanetary Disk” 153–154 (University of Hawaii at Manoa, 2004); available at http://www.lpi.usra.edu/meetings/chondrites2004/pdf/9072.pdf.

  25. 25

    Yurimoto, H., Koike, O., Nagahara, H., Morioka, M. & Nagasawa, H. Heterogeneous distribution of Mg isotopes in anorthite single crystal from Type B CAIs in Allende meteorite. Lunar Planet. Sci. 31, 1593 (2000)

    ADS  Google Scholar 

  26. 26

    MacPherson, G. J. & Davis, A. M. A petrologic and ion microprobe study of a Vigarano Type B refractory inclusion: Evolution by multiple stages of alteration and melting. Geochim. Cosmochim. Acta 57, 231–243 (1989)

    ADS  Article  Google Scholar 

  27. 27

    Hsu, W., Wasserburg, G. J. & Huss, G. R. High time resolution by use of the 26Al chronometer in the multistage formation of a CAI. Earth Planet. Sci. Lett. 182, 15–29 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763–1766 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Krot, A. N. et al. Evolution of oxygen isotopic composition in the inner solar nebula Astrophys. J. (in the press).

Download references

Acknowledgements

Financial support for this project was provided by NASA (A.N.K., I.D.H., G.J.M.) and Monkasho (H.Y.). We thank R. H. Hewins for comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Krot.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Oxide wt% vs. distance (µm) for compositional profiles AB and CD. (JPG 441 kb)

Supplementary Figure S2

Optical micrograph in transmitted light and combined X-ray elemental map of the CAI TS26. (JPG 867 kb)

Supplementary Figure S3

Bulk compositions of the chondrule-bearing Type C CAIs ABC plotted on a triangular diagram. (JPG 197 kb)

Supplementary Figure Legends

Legends to accompany the above Supplementary Figures. (DOC 20 kb)

Supplementary Table S1

Representative electron microprobe analyses of primary minerals in the chondrule-bearing CAIs ABC and TS26 from the CV carbonaceous chondrite Allende. (DOC 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krot, A., Yurimoto, H., Hutcheon, I. et al. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions. Nature 434, 998–1001 (2005). https://doi.org/10.1038/nature03470

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing