Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption

Abstract

Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability1,2,3. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced tumour growth in AQP1-null mice.
Figure 2: Angiogenesis in Matrigel and characterization of cultured endothelial cells.
Figure 3: Impaired migration of endothelial cells lacking AQP1.
Figure 4: Increased motility after transfection with aquaporin.

Similar content being viewed by others

References

  1. Nielsen, S., Smith, B. L., Christensen, E. I. & Agre, P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl Acad. Sci. USA 90, 7275–7279 (1993)

    ADS  CAS  PubMed  Google Scholar 

  2. Hasegawa, H., Lian, S. C., Finkbeiner, W. E. & Verkman, A. S. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am. J. Physiol. 266, C893–C903 (1994)

    CAS  PubMed  Google Scholar 

  3. Carter, E. P., Olveczky, B. P., Matthay, M. A. & Verkman, A. S. High microvascular endothelial water permeability in mouse lung measured by a pleural surface fluorescence method. Biophys. J. 74, 2121–2128 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A. & Krishna, S. Increased aquaporin 1 water channel expression in human brain tumours. Br. J. Cancer 87, 621–623 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Endo, M., Jain, R. K., Witwer, B. & Brown, D. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc. Res. 58, 89–98 (1999)

    CAS  PubMed  Google Scholar 

  6. Vacca, A. et al. Microvessel overexpression of aquaporin 1 parallels bone marrow angiogenesis in patients with active multiple myeloma. Br. J. Haematol. 113, 415–421 (2001)

    CAS  PubMed  Google Scholar 

  7. Ribatti, D. et al. Aquaporin-1 expression in the chick embryo chorioallantoic membrane. Anat. Rec. 268, 85–89 (2002)

    CAS  PubMed  Google Scholar 

  8. Moon, C. et al. Involvement of aquaporins in colorectal carcinogenesis. Oncogene 22, 6699–6703 (2003)

    CAS  PubMed  Google Scholar 

  9. Egami, K. et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J. Clin. Invest. 112, 67–75 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miao, W. M. et al. Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and -independent mechanisms. Cancer Res. 61, 7830–7839 (2001)

    CAS  PubMed  Google Scholar 

  11. Ma, T. et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA 97, 4386–4391 (2000)

    ADS  CAS  PubMed  Google Scholar 

  12. Yao, L. et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 93, 1612–1621 (1999)

    CAS  PubMed  Google Scholar 

  13. Solenov, E., Watanabe, H., Manley, G. T. & Verkman, A. S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. Cell Physiol. 286, C426–C432 (2004)

    CAS  PubMed  Google Scholar 

  14. Steinle, J. J. et al. Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J. Biol. Chem. 277, 43830–43835 (2002)

    CAS  PubMed  Google Scholar 

  15. Shi, G. P. et al. Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ. Res. 92, 493–500 (2003)

    CAS  PubMed  Google Scholar 

  16. Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O. & Holmgren, L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell Biol. 152, 1247–1254 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishida, T. et al. Targeted disruption of endothelial cell-selective adhesion molecule inhibits angiogenic processes in vitro and in vivo. J. Biol. Chem. 278, 34598–34604 (2003)

    CAS  PubMed  Google Scholar 

  18. Orr, A. W., Elzie, C. A., Kucik, D. F. & Murphy-Ullrich, J. E. Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J. Cell Sci. 116, 2917–2927 (2003)

    CAS  PubMed  Google Scholar 

  19. Lee, H., Goetzl, E. J. & An, S. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am. J. Physiol. Cell Physiol. 278, C612–C618 (2000)

    CAS  PubMed  Google Scholar 

  20. Schwab, A., Schuricht, B., Seeger, P., Reinhardt, J. & Dartsch, P. C. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflugers Arch. 438, 330–337 (1999)

    CAS  PubMed  Google Scholar 

  21. Schwab, A. Function and spatial distribution of ion channels and transporters in cell migration. Am. J. Physiol. Renal Physiol. 280, F739–F747 (2001)

    CAS  PubMed  Google Scholar 

  22. Rosengren, S., Henson, P. M. & Worthen, G. S. Migration-associated volume changes in neutrophils facilitate the migratory process in vitro. Am. J. Physiol. 267, C1623–C1632 (1994)

    CAS  PubMed  Google Scholar 

  23. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    CAS  PubMed  Google Scholar 

  24. Condeelis, J. Life at the leading edge: the formation of cell protrusions. Annu. Rev. Cell Biol. 9, 411–444 (1993)

    CAS  PubMed  Google Scholar 

  25. Yang, B., Brown, D. & Verkman, A. S. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J. Biol. Chem. 271, 4577–4580 (1996)

    CAS  PubMed  Google Scholar 

  26. Ma, T. et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 273, 4296–4299 (1998)

    CAS  PubMed  Google Scholar 

  27. Papadopoulos, M. C., Manley, G. T., Krishna, S. & Verkman, A. S. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 18, 1291–1293 (2004)

    CAS  PubMed  Google Scholar 

  28. Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468 (2003)

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Institutes of Health (to A.S.V.) and by a Wellcome Trust Clinician Scientist Fellowship (to M.C.P., sponsored by S. Krishna).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Verkman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

AQP1-CHO cells stained with Wheat Germ agglutinin as a plasma membrane marker, and immunostained for AQP1. (PDF 710 kb)

Supplementary Video S1

Migrating CHO cells, showing control cells (left) and AQP1-expressing cells (right). Four-hour recording, playback 720× faster. (AVI 4879 kb)

Supplementary Video S2

Migrating CHO cells, showing control cells (left) and AQP1-expressing cells (right). Two-minute recording, playback 10× faster. (AVI 4927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadoun, S., Papadopoulos, M., Hara-Chikuma, M. et al. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792 (2005). https://doi.org/10.1038/nature03460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03460

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing