Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device


The analytical technique of nuclear magnetic resonance (NMR1,2) is based on coherent quantum mechanical superposition of nuclear spin states. Recently, NMR has received considerable renewed interest in the context of quantum computation and information processing3,4,5,6,7,8,9,10,11, which require controlled coherent qubit operations. However, standard NMR is not suitable for the implementation of realistic scalable devices, which would require all-electrical control and the means to detect microscopic quantities of coherent nuclear spins. Here we present a self-contained NMR semiconductor device that can control nuclear spins in a nanometre-scale region. Our approach enables the direct detection of (otherwise invisible) multiple quantum coherences between levels separated by more than one quantum of spin angular momentum. This microscopic high sensitivity NMR technique is especially suitable for probing materials whose nuclei contain multiple spin levels, and may form the basis of a versatile multiple qubit device.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic diagrams illustrating the main features of our device and the experimental system.
Figure 2: Spectra of ΔR for 75As at three different intensities B1, which is proportional to the square root of the output power Pr.f. from an r.f. generator.
Figure 3: Behaviour of ΔR for 69Ga at ω0/2π.
Figure 4: Colour plots showing calculated values of ΔR.


  1. 1

    Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, Oxford, 1987)

    Google Scholar 

  2. 2

    Liang, Z. P. & Lauterbur, P. C. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (IEEE Press, Piscataway, 1999)

    Google Scholar 

  3. 3

    DiVincenzo, D. P. Quantum computation. Science 270, 255–261 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  4. 4

    Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999)

    CAS  Article  Google Scholar 

  8. 8

    Vandersypen, L. M. K. et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Leuenberger, M. N., Loss, D., Poggio, M. & Awschalom, D. D. Quantum information processing with large nuclear spins in GaAs semiconductors. Phys. Rev. Lett. 89, 207601 (2002)

    ADS  Article  Google Scholar 

  11. 11

    Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Levitt, M. H. Spin Dynamics (Wiley, New York, 2002)

    Google Scholar 

  13. 13

    Wald, K. R., Kouwenhoven, L. P., McEuen, P. L., van der Vaart, N. C. & Foxon, C. T. Local dynamic nuclear polarization using quantum point contacts. Phys. Rev. Lett. 73, 1011–1014 (1994)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Gammon, D. et al. Nuclear spectroscopy in single quantum dots: nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997)

    Article  Google Scholar 

  15. 15

    Kikkwawa, J. M. & Awschalom, D. D. All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000)

    ADS  Article  Google Scholar 

  16. 16

    Machida, T., Yamazaki, T., Ikushima, K. & Komiyama, S. Coherent control of nuclear-spin system in a quantum Hall device. Appl. Phys. Lett. 82, 409–411 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Yusa, G., Hashimoto, K., Muraki, K., Saku, T. & Hirayama, Y. Self-sustaining resistance oscillations: Electron-nuclear spin coupling in mesoscopic quantum Hall devices. Phys. Rev. B 69, 161–302 (2004)

    Google Scholar 

  18. 18

    Salis, G., Awschalom, D. D., Ohno, Y. & Ohno, H. Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells. Phys. Rev. B 64, 195304 (2001)

    ADS  Article  Google Scholar 

  19. 19

    Eickhoff, M., Lenzman, B., Flinn, G. & Suter, D. Coupling mechanisms for optically induced NMR in GaAs quantum wells. Phys. Rev. B 65, 125301 (2002)

    ADS  Article  Google Scholar 

  20. 20

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2003)

    Google Scholar 

  21. 21

    Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-photon Interactions: Basic Processes and Applications 488–489 (Wiley, New York, 1998)

    Google Scholar 

  22. 22

    Wokaun, A. & Ernst, R. R. Selective excitation and detection in multilevel spin systems: Application of single transition operators. J. Chem. Phys. 67, 1752–1758 (1977)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Leuenberger, M. N. & Loss, D. Grover algorithm for large nuclear spins in semiconductors. Phys. Rev. B 68, 165317 (2003)

    ADS  Article  Google Scholar 

  24. 24

    Ahn, J., Weinacht, T. C. & Bucksbaum, P. H. Information storage and retrieval through quantum phase. Science 287, 463–465 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Grover, L. K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kronmüller, S. et al. New resistance maxima in the fractional quantum Hall effect regime. Phys. Rev. Lett. 81, 2526–2529 (1998)

    ADS  Article  Google Scholar 

  27. 27

    Hashimoto, K., Muraki, K., Saku, T. & Hirayama, Y. Electrically controlled nuclear spin polarization and relaxation by quantum-Hall states. Phys. Rev. Lett. 88, 176601 (2002)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281–286 (2002)

    ADS  CAS  Article  Google Scholar 

Download references


The authors are grateful to T. Fujisawa, Y. Tokura, S. Sasaki, K. Semba, S. Saito, K. Ono, S. Tarucha, T. Machida, T. Ota and N. Kumada for discussions.

Author information



Corresponding authors

Correspondence to Go Yusa or Koji Muraki.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yusa, G., Muraki, K., Takashina, K. et al. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature 434, 1001–1005 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing