Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nucleosynthetic signatures of the first stars


The chemically most primitive stars provide constraints on the nature of the first stellar objects that formed in the Universe; elements other than hydrogen, helium and traces of lithium present within these objects were generated by nucleosynthesis in the very first stars. The relative abundances of elements in the surviving primitive stars reflect the masses of the first stars, because the pathways of nucleosynthesis are quite sensitive to stellar masses. Several models1,2,3,4,5 have been suggested to explain the origin of the abundance pattern of the giant star HE0107–5240, which hitherto exhibited the highest deficiency of heavy elements known1,6. Here we report the discovery of HE1327–2326, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE0107–5240. Both stars show extreme overabundances of carbon and nitrogen with respect to iron, suggesting a similar origin of the abundance patterns. The unexpectedly low Li and high Sr abundances of HE1327–2326, however, challenge existing theoretical understanding: no model predicts the high Sr abundance or provides a Li depletion mechanism consistent with data available for the most metal-poor stars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of high-resolution spectra of HE1327–2326 with G64–12 and CS 22876–032.
Figure 2: Abundance patterns of HE1327–2326 (subgiant solution, filled circles) and HE0107–5240 (open squares).


  1. 1

    Christlieb, N. et al. A stellar relic from the early Milky Way. Nature 419, 904–906 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Shigeyama, T., Tsujimoto, T. & Yoshii, Y. Excavation of the first stars. Astrophys. J. 568, L57–L60 (2003)

    ADS  Article  Google Scholar 

  3. 3

    Umeda, H. & Nomoto, K. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star. Nature 422, 871–873 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Limongi, M., Chieffi, A. & Bonifacio, P. On the origin of HE 0107–5240, the most iron-deficient star presently known. Astrophys. J. 594, L123–L126 (2003)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y. & Iben, I. Jr. Is HE 0107–5240 a primordial star? The characteristics of extremely metal-poor carbon-rich stars. Astrophys. J. 611, 476–493 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Christlieb, N. et al. HE 0107–5240, a chemically ancient star. I. A detailed abundance analysis. Astrophys. J. 603, 708–728 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wisotzki, L. et al. The Hamburg/ESO survey for bright QSOs. III. A large flux-limited sample of QSOs. Astron. Astrophys. 358, 77–87 (2000)

    ADS  CAS  Google Scholar 

  8. 8

    Noguchi, K. et al. High dispersion spectrograph (HDS) for the Subaru telescope. Publ. Astron. Soc. Jpn 54, 855–864 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the galaxy. Annu. Rev. Astron. Astrophys. (in the press)

  10. 10

    Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A. & Angulo, C. Updated big bang nucleosynthesis compared with Wilkinson microwave anisotropy probe observations and the abundance of light elements. Astrophys. J. 600, 544–552 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ryan, S. G., Norris, J. E. & Beers, T. C. The Spite lithium plateau: ultrathin but postprimordial. Astrophys. J. 523, 654–677 (1999)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ryan, S. G., Gregory, S. G., Kolb, U., Beers, T. C. & Kajino, T. Rapid rotation of ultra-Li-depleted halo stars and their association with blue stragglers. Astrophys. J. 571, 501–511 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Pinsonneault, M. H., Walker, T. P., Steigman, G. & Narayanan, V. K. Halo star lithium depletion. Astrophys. J. 527, 180–198 (1999)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Richard, O., Michaud, G. & Richer, J. Models of metal-poor stars with gravitational settling and radiative accelerations. III. Metallicity dependence. Astrophys. J. 580, 1100–1117 (2002)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C. & Ando, H. Detection of lead in the carbon-rich, very metal-poor star LP 625–44: A strong constraint on s-process nucleosynthesis at low metallicity. Astrophys. J. 536, L97–L100 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Travaglio, C. et al. Galactic evolution of Sr, Y, and Zr. A multiplicity of nucleosynthetic processes. Astrophys. J. 601, 864–884 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Christlieb, N. et al. The Hamburg/ESO R-process enhanced star survey (HERES). I. Project description, and discovery of two stars with strong enhancements of neutron-capture elements. Astron. Astrophys. 428, 1027–1037 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Fryer, C. L., Woosley, S. E. & Heger, A. Pair instability supernovae, gravity waves, and gamma-ray transients. Astrophys. J. 550, 372–382 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Yoshii, Y. Metal enrichment in the atmospheres of extremely metal-deficient dwarf stars by accretion of interstellar matter. Astron. Astrophys. 97, 280–290 (1981)

    ADS  CAS  Google Scholar 

  20. 20

    Norris, J. E., Ryan, S. G., Beers, T. C. & Deliyannis, C. P. Extremely metal-poor stars. III. The Li-depleted main-sequence turnoff dwarfs. Astrophys. J. 485, 370–379 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Beers, T. C., Rossi, S., Norris, J. E., Ryan, S. G. & Shefler, T. Estimation of stellar metal abundance. II. A recalibration of the Ca II K technique, and the autocorrelation function method. Astron. J. 117, 981–1009 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Asplund, M. New light on stellar abundances analyses: departures from LTE and homogeneity. Annu. Rev. Astron. Astrophys. (in the press)

  23. 23

    Bessell, M. S., Christlieb, N. & Gustafsson, B. On the oxygen abundance of HE 0107–5240. Astrophys. J. 612, L61–L63 (2004)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Alonso, A., Arribas, S. & Martinez-Roger, C. The empirical scale of temperatures of the low main sequence (F0V–K5V). Astron. Astrophys. 313, 873–890 (1996)

    ADS  Google Scholar 

  25. 25

    Yoshii, Y. in New Trends in Theoretical and Observational Cosmology (eds Sato, K. & Shiromizu, T.) 235–244 (Universal Academy, Tokyo, 2002)

    Google Scholar 

  26. 26

    Cutri, R. M., et al. 2MASS All-Sky Catalog of Point Sources (California Institute of Technology, Pasadena, 2003);

    Google Scholar 

  27. 27

    Girard, T. M. et al. The southern proper motion program. III. A near-complete catalog to V = 17.5. Astron. J. 127, 3060–3071 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Kim, Y., Demarque, P., Yi, S. K. & Alexander, D. R. The Y2 isochrones for alpha-element enhanced mixtures. Astrophys. J. Suppl. 143, 499–511 (2002)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Kurucz, R. L. ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid CD-ROM 13 (Smithsonian Astrophysical Observatory, Cambridge, 1993);

    Google Scholar 

  30. 30

    Asplund, M., Grevesse, N. & Sauval, A. J. in Cosmic Abundances As Records Of Stellar Evolution And Nucleosynthesis (eds Bash, F. N. & Barnes, T. G.) ASP Conf. Ser. (in the press); preprint at (2004).

Download references


We thank A. Steinhauer and C. Thom for obtaining additional observations, N. Iwamoto, K. Maeda, T. Suda, N. Tominaga and H. Umeda for valuable discussions and L. Wisotzki and D. Reimers for leading the HES. This work was supported by the Astronomical Society of Australia (A.F.), Australian Research Council (M.A., A.F., J.E.N.), Ministry of Education, Culture, Sports, Science and Technology in Japan and JSPS (all Japanese co-authors), Deutsche Forschungsgemeinschaft (N.C.), Swedish Research Council (P.S.B., K.E.), US National Science Foundation (T.C.B.) and JINA (T.C.B., N.C., A.F., J.E.N.). This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

Author information



Corresponding author

Correspondence to Anna Frebel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frebel, A., Aoki, W., Christlieb, N. et al. Nucleosynthetic signatures of the first stars. Nature 434, 871–873 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing