Geobiology of a microbial endolithic community in the Yellowstone geothermal environment

Abstract

The endolithic environment, the pore space of rocks, is a ubiquitous habitat for microorganisms on the Earth1 and is an important target of the search for life elsewhere in the Solar System2. Photosynthetic, endolithic microbial communities commonly inhabit the outer millimetres to centimetres of all rocks exposed to the Earth's surface. In the most extreme terrestrial climates, such as hot and cold deserts, endolithic microorganisms are often the main form of life3,4,5. The endolithic microhabitat gives protection from intense solar radiation and desiccation, and it provides mineral nutrients, rock moisture and growth surfaces4,5. Here we describe the discovery and identification of the constituents of an extremely acidic (pH 1) endolithic microbial community inhabiting the pore space of rocks in the geothermal environment of Yellowstone National Park, USA. Subjected to silica mineralization, such endolithic communities constitute biomarkers that can become fossilized and potentially preserved in the geological record. Remnants of these communities could serve as biosignatures and provide important clues about ancient life associated with geothermal environments on the Earth or elsewhere in the Solar System.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Endolithic microbial communities in highly acidic (pH1) chalcedonic sinters of Yellowstone's Norris Geyser Basin.
Figure 2: Microbial diversity of the Norris community.

References

  1. 1

    Golubic, S., Friedmann, E. I. & Schneider, J. The lithobiontic ecological niche, with special reference to microorganisms. J. Sedim. Petrol. 51, 475–478 (1981)

    Google Scholar 

  2. 2

    Hofmann, B. A. & Farmer, J. D. Filamentous fabrics in low-temperature mineral assemblages: are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars. Planet. Space Sci. 48, 1077–1086 (2000)

    ADS  Article  Google Scholar 

  3. 3

    Friedmann, E. I. & Ocampo, R. Endolithic blue-green algae in dry valleys—primary producers in Antarctic desert ecosystem. Science 193, 1247–1249 (1976)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Friedmann, E. I. Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053 (1982)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bell, R. A. Cryptoendolithic algae of hot semiarid lands and deserts. J. Phycol. 29, 133–139 (1993)

    Article  Google Scholar 

  6. 6

    Gross, W., Kuver, J., Tischendorf, G., Bouchaala, N. & Busch, W. Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur. J. Phycol. 33, 25–31 (1998)

    Article  Google Scholar 

  7. 7

    Mosser, J. L., Misser, A. G. & Brock, T. D. Bacterial origin of sulfuric acid in geothermal habitats. Science 179, 1323–1324 (1973)

    ADS  CAS  Article  Google Scholar 

  8. 8

    White, D. E., Hutchinson, R. A. & Keith, T. E. C. The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming. (US Geol. Surv. Professional Paper no. 1456, Washington DC, 1988).

  9. 9

    Cady, S. L. & Farmer, J. D. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, J. A.) 150–173 (Wiley, New York, 1996)

    Google Scholar 

  10. 10

    Asada, R. & Tazaki, K. Silica biomineralization of unicellular microbes under strongly acidic conditions. Can. Mineral. 39, 1–16 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Blank, C. E., Cady, S. L. & Pace, N. R. Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl. Environ. Microbiol. 68, 5123–5135 (2002)

    CAS  Article  Google Scholar 

  12. 12

    Zierenberg, R. A. & Schiffman, P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge. Nature 348, 155–157 (1990)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. & Steele, A. Morphological biosignatures and the search for life on Mars. Astrobiology 3, 351–368 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Farmer, J. D. & Des Marais, D. J. Exploring for a record of ancient Martian life. J. Geophys. Res. Planets 104, 26977–26995 (1999)

    ADS  Article  Google Scholar 

  15. 15

    Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–465 (2001)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Des Marais, D. J. & Walter, M. R. Astrobiology: Exploring the origins, evolution, and distribution of life in the Universe. Annu. Rev. Ecol. Syst. 30, 397–420 (1999)

    CAS  Article  Google Scholar 

  17. 17

    Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997)

    CAS  Article  Google Scholar 

  18. 18

    Stackebrandt, E. & Goebel, B. M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849 (1994)

    CAS  Article  Google Scholar 

  19. 19

    Iivanainen, E. K., Martikainen, P. J., Raisanen, M. L. & Katila, M. L. Mycobacteria in boreal coniferous forest soils. FEMS Microbiol. Ecol. 23, 325–332 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Spear, J. R., Walker, J. J., McCullem, T. M. & Pace, N. R. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. USA 102, 2555–2560 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hall-Stoodley, L. & Lappin-Scott, H. Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum . FEMS Microbiol. Lett. 168, 77–84 (1998)

    CAS  Article  Google Scholar 

  22. 22

    Ascaso, C. & Wierzchos, J. The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol. J. 20, 439–450 (2003)

    CAS  Article  Google Scholar 

  23. 23

    Schopf, J. W., Barghoorn, E. S., Maser, M. D. & Gordon, R. O. Electron microscopy of fossil bacteria two billion years old. Science 149, 1365–1367 (1965)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Walter, M. R. A hot spring analog for the depositional environment of Precambrian iron formations of the Lake Superior Region. Econ. Geol. 67, 965–980 (1972)

    CAS  Article  Google Scholar 

  25. 25

    Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Doemel, W. N. & Brock, T. D. pH of very acid soils. Nature 229, 574 (1971)

    ADS  CAS  Article  Google Scholar 

  27. 27

    St. Amand, A. L., Frank, D. N., De Groote, M. A. & Pace, N. R. Microscopic detection of Myocobacterium avium complex organisms in tissue with specific rRNA oligonucleotide probes. J. Clin. Microbiol. 4(43), (in the press)

  28. 28

    Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. (in the press)

  29. 29

    Wierzchos, J. & Ascaso, C. Application of backscattered electron imaging to the study of the lichen rock interface. J. Microsc. 175, 54–59 (1994)

    Article  Google Scholar 

  30. 30

    Frigaard, N. U., Larsen, K. L. & Cox, R. P. Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiol. Ecol. 20, 69–77 (1996)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Harris, D. Papineau, R. Ley, C. Rumbaitis-del Rio and the Pace laboratory members for discussion; H. Haesler, C. Hendrix and the staff of Yellowstone National Park for their assistance and discussion; J. Maresca and D. Bryant for high-performance liquid chromatography analysis of photosynthetic pigments; F. Luiszer and J. Drexler for chemical analysis and support for SEM; P. Boni and T. Giddings for sample preparation; H. Kleebe and G. Zito of the Colorado School of Mines for use of the BSE–SEM; and R. Castenholz and the CCMEE for cultures of Cyanidium spp. This research was supported by a grant from the NSF to N.R.P. and the University of Colorado Center for Astrobiology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Norman R. Pace.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walker, J., Spear, J. & Pace, N. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 1011–1014 (2005). https://doi.org/10.1038/nature03447

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing