A non-terrestrial 16O-rich isotopic composition for the protosolar nebula

Abstract

The discovery in primitive components of meteorites1,2 of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material3,4. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 ± 4‰ relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions—as yet unknown—that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light5,6,7 may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Typical oxygen isotope depth profiles for a lunar metallic grain showing 16O enrichment.
Figure 2: Oxygen isotopic composition in the surface layers of five lunar metallic grains enriched in the 16O-rich SEP component.
Figure 3: Prediction of the composition of the protosolar nebular gas.

References

  1. 1

    Clayton, R. N., Grossman, L. & Mayeda, T. A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wiens, R. C., Huss, G. R. & Burnett, D. S. The solar oxygen-isotopic composition: predictions and implications for solar nebula processes. Meteorit. Planet. Sci. 34, 99–107 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Wiens, R. C., Bochsler, P., Burnett, D. S. & Wimmer-Schweingruber, R. F. Solar and solar-wind isotopic compositions. Earth Planet. Sci. Lett. 222, 697–712 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Clayton, R. N. Self-shielding in the solar nebula. Nature 415, 860–861 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Lyons, J. R. & Young, E. D. Evolution of oxygen isotopes in the solar nebula. Lunar Planet. Sci. [CD-ROM] XXXV, 1970 (2004)

    ADS  Google Scholar 

  7. 7

    Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763–1766 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Chaussidon, M. & Robert, F. Lithium nucleosynthesis in the Sun inferred from the solar wind 7Li/6Li ratio. Nature 402, 270–274 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. Solar wind record on the Moon: Deciphering presolar from planetary nitrogen. Science 290, 1142–1145 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Hashizume, K., Chaussidon, M., Marty, B. & Terada, K. Protosolar carbon isotopic composition: implications for the origin of meteoritic organics. Astrophys. J. 600, 480–484 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Morris, R. V. Origins and size distribution of metallic iron particles in the lunar regolith. Proc. 11th Lunar Planet. Sci. Conf, 1697–1712 (1980)

  12. 12

    Epstein, S. & Taylor, H. P. Jr The isotopic composition and concentration of water, hydrogen and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil. Proc. 4th Lunar Sci. Conf. 1559–1575 (1973)

  13. 13

    Taylor, H. P. Jr & Epstein, S. O18/O16 and Si30/Si28 studies of some Apollo 15, 16, and 17 samples. Proc. 4th Lunar Sci. Conf. 1657–1679 (1973)

  14. 14

    Wiechert, U. et al. Oxygen isotopes and the Moon forming giant impact. Science 294, 345–348 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Robert, F., Rejou-Michel, A. & Javoy, M. Oxygen isotope homogeneity of the Earth: new evidence. Earth Planet. Sci. Lett. 108, 1–9 (1992)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Clayton, R. N., Mayeda, T. K. & Hurd, J. M. Loss of oxygen, silicon, sulfur and potassium from the lunar regolith. Proc. 5th Lunar Sci.Conf. 1801–1809 (1974)

  17. 17

    Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Ranges of Ions in Matter Vol. 1 (Pergamon, New York, 1985)

    Google Scholar 

  18. 18

    Wimmer-Schweingruber, R. F. in Solar Wind Ten (eds Velli, M., Bruno, R. & Malara, F.) 577–582 (AIP Press, New York, 2003)

    Google Scholar 

  19. 19

    Ireland, T. R., Holden, P., Norman, M. & Clarke, J. Oxygen isotopes in lunar metal grains — A natural GENESIS experiment. Lunar Planet. Sci. [CD-ROM] XXXV, 1448 (2004)

    ADS  Google Scholar 

  20. 20

    Hashizume, K., Marty, B. & Wieler, R. Analyses of nitrogen and argon in single lunar grains: towards a quantification of the asteroidal contribution to planetary surfaces. Earth Planet. Sci. Lett. 202, 201–216 (2002)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wieler, R. The solar noble gas record in lunar samples and meteorites. Space Sci. Rev. 85, 303–314 (1998)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Young, E. D. & Russell, S. S. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452–455 (1998)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Krot, A. N., McKeegan, K. D., Leshin, L. A., MacPherson, G. J. & Scott, E. R. D. Existence of an 16O rich gaseous reservoir in the solar nebula. Science 295, 1051–1054 (2002)

    ADS  CAS  Article  Google Scholar 

  24. 24

    McKeegan, K. D., Leshin, L. A., Russel, S. S. & MacPherson, G. J. Oxygen isotopic abundances in calcium-aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity. Science 280, 414–418 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ireland, T. R., Zinner, E., Fahey, A. J. & Esat, T. M. Evidence for distillation in the formation of HAL and related hibonite inclusions. Geochim. Cosmochim. Acta 56, 2503–2520 (1992)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kobayashi, S., Imai, H. & Yurimoto, H. New extreme 16O-rich reservoir in the early solar system. Geochem. J. 37, 663–669 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Thiemens, M. H. & Heidenreich, J. E. The mass independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Thiemens, M. H. Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Messenger, S., Keller, L. P., Stadermann, F. J., Walker, R. M. & Zinner, E. Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science 300, 105–108 (2003)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Nagashima, K., Krot, A. N. & Yurimoto, H. Stardust silicates from primitive meteorites. Nature 428, 921–924 (2004)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Samples were provided by NASA. We thank J. Aléon, G. Libourel, B. Marty, A. Pack, F. Robert and Z. Sharp for discussions, B. Marty for encouragement, and K. Terada for help in sample preparation. This study was supported by the Mitsubishi Foundation, JSPS, MEXT, Région Lorraine, CNES-CSEEM and by INSU-PNP through a ‘Poste Rouge’ fellowship (K.H.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ko Hashizume.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

Depth profiles of Oxygen isotopic composition in metallic lunar grains. (XLS 59 kb)

Supplementary Figure S1a

Example of oxygen isotope depth profiles, plotted for grain 04-21 from lunar soil 79035, in which any negative Δ17O signatures were not observed. (DOC 60 kb)

Supplementary Figure S1b

Example of oxygen isotope depth profiles, plotted for grain 04-32 from lunar soil 79035, in which any negative Δ17O signatures were not observed. (DOC 59 kb)

Supplementary Figure S2

Oxygen isotopic composition at surfaces of seven metallic grains from lunar soil 79035, which did not show significant negative Δ17O (that is, solar) signatures. (DOC 81 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hashizume, K., Chaussidon, M. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula. Nature 434, 619–622 (2005). https://doi.org/10.1038/nature03432

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.