Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional spectroscopy of electronic couplings in photosynthesis


Time-resolved optical spectroscopy is widely used to study vibrational and electronic dynamics by monitoring transient changes in excited state populations on a femtosecond timescale1. Yet the fundamental cause of electronic and vibrational dynamics—the coupling between the different energy levels involved—is usually inferred only indirectly. Two-dimensional femtosecond infrared spectroscopy based on the heterodyne detection of three-pulse photon echoes2,3,4,5,6,7 has recently allowed the direct mapping of vibrational couplings, yielding transient structural information. Here we extend the approach to the visible range3,8 and directly measure electronic couplings in a molecular complex, the Fenna–Matthews–Olson photosynthetic light-harvesting protein9,10. As in all photosynthetic systems, the conversion of light into chemical energy is driven by electronic couplings that ensure the efficient transport of energy from light-capturing antenna pigments to the reaction centre11. We monitor this process as a function of time and frequency and show that excitation energy does not simply cascade stepwise down the energy ladder. We find instead distinct energy transport pathways that depend sensitively on the detailed spatial properties of the delocalized excited-state wavefunctions of the whole pigment–protein complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental and theoretical spectra (real parts) of the FMO complex from Chlorobium tepidum at 77 K.
Figure 2: Exciton delocalization and energy transport.

Similar content being viewed by others


  1. Zewail, A. H. Femtochemistry (World Scientific, Singapore, 1994)

    Google Scholar 

  2. Asplund, M. C., Zanni, M. T. & Hochstrasser, R. M. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc. Natl Acad. Sci. USA 97, 8219–8224 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Wright, J. C. Coherent multidimensional vibrational spectroscopy. Int. Rev. Phys. Chem. 21, 185–255 (2002)

    Article  CAS  Google Scholar 

  5. Khalil, M., Demirdöven, N. & Tokmakoff, A. Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution. J. Phys. Chem. A 107, 5258–5279 (2003)

    Article  CAS  Google Scholar 

  6. Asbury, J. B. et al. Hydrogen bond dynamics probed with ultrafast infrared heterodyne-detected multidimensional vibrational stimulated echoes. Phys. Rev. Lett. 91, 237402 (2003)

    Article  ADS  Google Scholar 

  7. Cervetto, V., Helbing, J., Bredenbeck, J. & Hamm, P. Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison. J. Chem. Phys. 121, 5935–5942 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Fenna, R. E. & Matthews, B. W. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258, 573–577 (1975)

    Article  ADS  CAS  Google Scholar 

  10. Li, Y.-F., Zhou, W., Blankenship, R. E. & Allen, J. P. Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J. Mol. Biol. 271, 456–471 (1997)

    Article  CAS  Google Scholar 

  11. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell, Oxford, 2002)

    Book  Google Scholar 

  12. Blankenship, R. E. & Matsuura, K. in Light-Harvesting Antennas in Photosynthesis (eds Green, B. R. & Parson, W. W.) 195–217 (Kluwer Academic, Dordrecht, 2003)

    Book  Google Scholar 

  13. Savikhin, S., Buck, D. R. & Struve, W. S. Toward level-to-level energy transfers in photosynthesis: The Fenna–Matthews–Olson protein. J. Phys. Chem. B 102, 5556–5565 (1998)

    Article  CAS  Google Scholar 

  14. Vulto, S. I. E. et al. Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K. J. Phys. Chem. B 102, 9577–9582 (1998)

    Article  CAS  Google Scholar 

  15. Vulto, S. I. E. et al. Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: A kinetic model. J. Phys. Chem. B 103, 8153–8161 (1999)

    Article  CAS  Google Scholar 

  16. Wendling, M. et al. The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: Refining experiments and simulations. Photosynth. Res. 71, 99–123 (2002)

    Article  CAS  Google Scholar 

  17. Lepetit, L. & Joffre, M. Two-dimensional nonlinear optics using Fourier-transform spectral interferometry. Opt. Lett. 21, 564–566 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Tian, P., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553–1555 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Cowan, M. L., Ogilvie, J. P. & Miller, R. J. D. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386, 184–189 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Brixner, T., Stopkin, I. V. & Fleming, G. R. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29, 884–886 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Brixner, T., Mancal, T., Stopkin, I. V. & Fleming, G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Cho, M. Nonlinear response functions for three-dimensional spectroscopies. J. Chem. Phys. 115, 4424–4437 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Prall, B. S., Parkinson, D. Y., Fleming, G. R., Yang, M. & Ishikawa, N. Two-dimensional optical spectroscopy: Two-color photon echoes of electronically coupled phthalocyanine dimers. J. Chem. Phys. 120, 2537–2540 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Tokmakoff, A. Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy. J. Phys. Chem. A 104, 4247–4255 (2000)

    Article  CAS  Google Scholar 

  25. Kwac, K. & Cho, M. Two-color pump-probe spectroscopies of two- and three-level systems: Two-dimensional line shapes and solvation dynamics. J. Phys. Chem. A 107, 5903–5912 (2003)

    Article  CAS  Google Scholar 

  26. Zhang, W. M., Meier, T., Chernyak, V. & Mukamel, S. Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys. 108, 7763–7774 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Yang, M., Damjanovic, A., Vaswani, H. M. & Fleming, G. R. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys. J. 85, 140–158 (2003)

    Article  CAS  Google Scholar 

  28. van Amerongen, H., Valkunas, L. & van Grondelle, R. Photosynthetic Excitons (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  29. Maznev, A. A., Nelson, K. A. & Rogers, T. A. Optical heterodyne detection of laser-induced gratings. Opt. Lett. 23, 1319–1321 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Goodno, G. D., Dadusc, G. & Miller, R. J. D. Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. J. Opt. Soc. Am. B 15, 1791–1794 (1998)

    Article  ADS  CAS  Google Scholar 

Download references


We thank Y.-Z. Ma, L. Valkunas and M. Yang for discussions, and C. Goodhope for protein purification. The apparatus for 2D spectroscopy was constructed by I. V. Stiopkin and T.B. This work was supported by the DOE (at LBNL, UC Berkeley and Arizona State University), and by a CRIP grant to M.C. by KOSEF (Korea). T.B. thanks the German Science Foundation (DFG) for an Emmy Noether fellowship, and J.S. thanks the German Academic Exchange Service (DAAD) for a postdoctoral fellowship.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Minhaeng Cho or Graham R. Fleming.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brixner, T., Stenger, J., Vaswani, H. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing