Abstract
More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Zirconium/hafnium fractionation and rare earth element systematics in sub-cratonic garnet pyroxenites, Norway
Contributions to Mineralogy and Petrology Open Access 10 August 2023
-
Genesis of Hawaiian lavas by crystallization of picritic magma in the deep mantle
Nature Communications Open Access 13 March 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)
Eggins, S. M. Petrogenesis of Hawaiian tholeiites. 1. Phase-equilibria constraints. Contrib. Mineral. Petrol. 110, 387–397 (1992)
Sobolev, A. V. & Nikogosian, I. K. Petrology of long-lived mantle plume magmatism: Hawaii (Pacific) and Reunion Island (Indian Ocean). Petrology 2, 111–144 (1994)
Hauri, E. H. Major element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996)
Herzberg, C. & Zhang, J. Z. Melting experiments on anhydrous peridotite KLB. 1. Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res. Solid Earth 101, 8271–8295 (1996)
Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)
Wagner, T. P. & Grove, T. L. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib. Mineral. Petrol. 131, 1–12 (1998)
Herzberg, C. & O'Hara, M. J. Plume-associated ultramafic magmas of phanerozoic age. J. Petrol. 43, 1857–1883 (2002)
Takahashi, E. & Nakajima, K. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, O. M., Naka, J. & Aramaki, S.) 403–418 (Geophys. Monogr. 128, AGU, Washington DC, 2002)
Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484 (2003)
Beattie, P., Ford, C. & Russell, D. Partition coefficients for olivine-melt and ortho-pyroxene-melt systems. Contrib. Mineral. Petrol. 109, 212–224 (1991)
Li, C., Ripley, E. M. & Mathez, E. A. The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chem. Geol. 201, 295–306 (2003)
Mavrogenes, J. A. & O'Neill, H. S. C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim. Cosmochim. Acta 63, 1173–1180 (1999)
Moore, J. G. & Clague, D. Volcano growth and evolution of island of Hawaii. Geol. Soc. Am. Bull. 104, 1471–1484 (1992)
Sobolev, A. V., Hofmann, A. W. & Nikogosian, I. K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986–990 (2000)
Lassiter, J. C. & Hauri, E. H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998)
Kogiso, T., Hirschmann, M. M. & Reiners, P. W. Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta 68, 345–360 (2004)
Ryabchikov, I. D. High NiO content in mantle-derived magmas as evidence for material transfer from the Earth's core. Dokl. Earth Sci. 389, 437–439 (2003)
Brandon, A. D., Norman, M. D., Walker, R. J. & Morgan, J. W. Os-186-Os-187 systematics of Hawaiian picrites. Earth Planet. Sci. Lett. 174, 25–42 (1999)
Humayun, M., Qin, L. P. & Norman, M. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004)
Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999)
Vidal, V. & Bonneville, A. Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate. J. Geophys. Res. Solid Earth 109, B03104 (2004)
Van Ark, E. & Lin, J. Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain. J. Geophys. Res. Solid Earth 109, B11401 (2004)
Li, X. Q., Kind, R., Yuan, X. H., Wolbern, I. & Hanka, W. Rejuvenation of the lithosphere by the Hawaiian plume. Nature 427, 827–829 (2004)
Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)
Yasuda, A., Fujii, T. & Kurita, K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res. Solid Earth 99, 9401–9414 (1994)
Yaxley, G. M. & Green, D. H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. 78, 243–255 (1998)
Korzhinskii, D. S. Theory of Metasomatic Zoning (Clarendon Press, Oxford, 1970)
Yaxley, G. M., Sobolev, A. V. & Snow, J. High-pressure partial melting of gabbro and the preservation of ‘ghost plagioclase’ signatures. Geochim. Cosmochim. Acta 68, A578 (2004)
Yaxley, G. M. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib. Mineral. Petrol. 139, 326–338 (2000)
Pertermann, M. & Hirschmann, M. M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. Solid Earth 108(B2), 2125 (2003)
Hauri, E. H. & Kurz, M. D. Melt migration and mantle chromatography, 2: a time-series Os isotope study of Mauna Loa Volcano, Hawaii. Earth Planet. Sci. Lett. 153, 21–36 (1997)
Ono, S., Ito, E. & Katsura, T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett. 190, 57–63 (2001)
Kogiso, T., Hirschmann, M. M. & Frost, D. J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603–617 (2003)
Morgan, J. P., Morgan, W. J. & Price, E. Hotspot melting generates both hotspot volcanism and a hotspot swell. J. Geophys. Res. Solid Earth 100, 8045–8062 (1995)
Li, X. et al. Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405, 938–941 (2000)
Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of Mid-Ocean-Ridge Basalt from the Upwelling Mantle by Focused Flow of Melt in Dunite Channels. Nature 375, 747–753 (1995)
Haskins, E. H. & Garcia, M. O. Scientific drilling reveals geochemical heterogeneity within the Ko'olau shield, Hawai'i. Contrib. Mineral. Petrol. 147, 162–188 (2004)
Gibson, S. A., Thompson, R. N. & Dickin, A. P. Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth Planet. Sci. Lett. 174, 355–374 (2000)
Stolper, E. M., DePaolo, D. J. & Thomas, D. M. Introduction to special section: Hawaii Scientific Drilling Project. J. Geophys. Res. Solid Earth 101, 11593–11598 (1996)
Yarosewich, E. J., Nelen, J. A. & Norberg, J. A. Reference sample for electron microprobe analysis. Geostand. Newsl. 4, 43–47 (1980)
Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002)
Garcia, M. O., Foss, D. J. P., West, H. B. & Mahoney, J. J. Geochemical and isotopic evolution of Loihi Volcano, Hawaii. J. Petrol. 36, 1647–1674 (1995)
Danyushevsky, L. V. The effect of small amounts of H2O crystallisation of mid-ocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 110, 265–280 (2001)
Manglik, A. & Christensen, U. R. Effect of mantle depletion buoyancy on plume flow and melting beneath a stationary plate. J. Geophys. Res. Solid Earth 102, 5019–5028 (1997)
Lehnert, K. A. et al. A global geochemical database: Application to mid-ocean ridges and ocean islands. Eos 79 (Fall Meet. Suppl.), F44 (1998)
Garcia, M. O. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, O. M., Naka, J. & Aramaki, S.) 391–402 (Geophys. Monogr. 128, AGU, Washington DC, 2002)
Bennett, V. C., Esat, T. M. & Norman, M. D. Two mantle-plume components in Hawaiian picrites inferred from correlated Os-Pb isotopes. Nature 381, 221–224 (1996)
Blichert-Toft, I., Frey, F. A. & Albarede, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999)
Kurz, M. D., Curtice, J., Lott, D. E. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosyst. 5, Q04G14 (2004)
Acknowledgements
We thank the HSDP and KSDP teams, A.T. Anderson and A. Rocholl for providing samples; E. Yarosewich for supplying microprobe standards; B. Schulz-Dobrick for supervising the purchase and installation of the Jeol Jxa 8200 Electron Microprobe in the Max Planck Institute for Chemistry; E. Macsenaere-Riester for assistance with this; A. Gurenko and N. Groschopf for maintaining the microprobe; A. Yasevich, V. Sobolev and M. Kamenetsky for help in sample preparation; D. Kuzmin for help in electron probe analyses; D. Kuzmin, V. Kamenetsky and V. Batanova for providing unpublished olivine analyses; L. Danyushevsky for making access available to PETROLOG thermodynamic modelling software and for updating it for use with nickel; C. Herzberg, V. Kamenetsky, A. Gurenko, H. Dick, G. Woerner, C. Langmuir, P. Kelemen, L. Kogarko, I. Ryabchikov, A. Ariskin and D. DePaolo for discussions; and M. Garcia, L. Danyushevsky, S. Huang, M. Portnyagin, K. Putirka and D. Canil for comments that improved the clarity of the manuscript. This work was supported by a Wolfgang Paul Award of the Alexander von Humboldt Foundation to A.V.S. Partial support was received from the Russian Academy of Science and Russian Federation President's grants to A.V.S. and from ISES (Netherlands Research Centre for Integrated Solid Earth Science) to I.K.N.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Supplementary Notes
This file contains Supplementary Methods (detailed explanations of geochemical and physical modeling), Supplementary Equations, Supplementary Tables S1-S3, Supplementary Figure S1 and additional references. (PDF 426 kb)
Rights and permissions
About this article
Cite this article
Sobolev, A., Hofmann, A., Sobolev, S. et al. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005). https://doi.org/10.1038/nature03411
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature03411
This article is cited by
-
Genesis of Hawaiian lavas by crystallization of picritic magma in the deep mantle
Nature Communications (2023)
-
Pyroxenite melting at subduction zone: Implications for the origin of mafic arc magmas
Science China Earth Sciences (2023)
-
Zirconium/hafnium fractionation and rare earth element systematics in sub-cratonic garnet pyroxenites, Norway
Contributions to Mineralogy and Petrology (2023)
-
Progress in the numerical modeling of mantle plumes
Science China Earth Sciences (2023)
-
Mantle source lithologies for the Columbia River flood basalt province
Contributions to Mineralogy and Petrology (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.