Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair

Abstract

Inherited mutations in BRCA2 are associated with a predisposition to early-onset breast cancers. The underlying basis of tumorigenesis is thought to be linked to defects in DNA double-strand break repair by homologous recombination. Here we show that the carboxy-terminal region of BRCA2, which interacts directly with the essential recombination protein RAD51, contains a site (serine 3291; S3291) that is phosphorylated by cyclin-dependent kinases. Phosphorylation of S3291 is low in S phase when recombination is active, but increases as cells progress towards mitosis. This modification blocks C-terminal interactions between BRCA2 and RAD51. However, DNA damage overcomes cell cycle regulation by decreasing S3291 phosphorylation and stimulating interactions with RAD51. These results indicate that S3291 phosphorylation might provide a molecular switch to regulate RAD51 recombination activity, providing new insight into why BRCA2 C-terminal deletions lead to radiation sensitivity and cancer predisposition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation of the C-terminal RAD51-interaction domain of BRCA2.
Figure 2: S3291 phosphorylation blocks interactions between the C terminus of BRCA2 and RAD51.
Figure 3: Analysis of the phosphorylation status of S3291 in vivo.
Figure 4: Involvement of S3291 phosphorylation in mediating RAD51 interactions and efficient homologous recombination.

Similar content being viewed by others

References

  1. Welcsh, P. L. & King, M. C. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum. Mol. Genet. 10, 705–713 (2001)

    Article  CAS  Google Scholar 

  2. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002)

    Article  CAS  Google Scholar 

  3. King, M. C., Marks, J. H. & Mandell, J. B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2 . Science 302, 643–646 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Patel, K. J. et al. Involvement of BRCA2 in DNA repair. Mol. Cell 1, 347–357 (1998)

    Article  CAS  Google Scholar 

  5. Tutt, A. et al. Absence of BRCA2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9, 1107–1110 (1999)

    Article  CAS  Google Scholar 

  6. Yu, V. P. C. C. et al. Gross chromosomal rearrangements and genetic exchange between non-homologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400–1406 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2 . Nature 378, 789–792 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Tavtigian, S. V. et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nature Genet. 12, 333–337 (1996)

    Article  CAS  Google Scholar 

  9. Sharan, S. K. et al. Embryonic lethality and radiation hypersensitivity mediated by RAD51 in mice lacking BRCA2. Nature 386, 804–810 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017–3022 (2003)

    Article  CAS  Google Scholar 

  11. Connor, F. et al. Tumorigenesis and a DNA-repair defect in mice with a truncating BRCA2 mutation. Nature Genet. 17, 423–430 (1997)

    Article  CAS  Google Scholar 

  12. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001)

    Article  CAS  Google Scholar 

  13. West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell Biol. 4, 1–11 (2003)

    Article  Google Scholar 

  14. Bork, P., Blomberg, N. & Nilges, M. Internal repeats in the BRCA2 protein sequence. Nature Genet. 13, 22–23 (1996)

    Article  CAS  Google Scholar 

  15. Bignell, G., Micklem, G., Stratton, M. R., Ashworth, A. & Wooster, R. The BRC repeats are conserved in mammalian BRCA2 proteins. Hum. Mol. Genet. 6, 53–58 (1997)

    Article  CAS  Google Scholar 

  16. Wong, A. K. C., Pero, R., Ormonde, P. A., Tavtigian, S. V. & Bartel, P. L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene BRCA2 . J. Biol. Chem. 272, 31941–31944 (1997)

    Article  CAS  Google Scholar 

  17. Chen, P. L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl Acad. Sci. USA 95, 5287–5292 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Mizuta, R. et al. Rab22 and Rab163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc. Natl Acad. Sci. USA 94, 6927–6932 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Davies, A. A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001)

    Article  CAS  Google Scholar 

  20. Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287–293 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Pellegrini, L. & Venkitaraman, A. Emerging functions of BRCA2 in DNA recombination. Trends Biochem. Sci. 29, 310–316 (2004)

    Article  CAS  Google Scholar 

  22. Stark, J. M. et al. ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J. Biol. Chem. 277, 20185–20194 (2002)

    Article  CAS  Google Scholar 

  23. Chen, C. F., Chen, P. L., Zhong, Q., Sharp, Z. D. & Lee, W. H. Expression of BRC repeats in breast cancer cells disrupts the BRCA2–RAD51 complex and leads to radiation hypersensitivity and loss of G2/M checkpoint control. J. Biol. Chem. 274, 32931–32935 (1999)

    Article  CAS  Google Scholar 

  24. Marmorstein, L. Y., Ouchi, T. & Aaronson, S. A. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc. Natl Acad. Sci. USA 95, 13869–13874 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Chen, J. J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998)

    Article  CAS  Google Scholar 

  26. Tarsounas, M., Davies, A. A. & West, S. C. RAD51 localization and activation following DNA damage. Phil. Trans. R. Soc. Lond. B 359, 87–93 (2004)

    Article  CAS  Google Scholar 

  27. Yuan, S.-S. F. et al. BRCA2 is required for ionizing radiation-induced assembly of RAD51 complex in vivo . Cancer Res. 59, 3547–3551 (1999)

    CAS  PubMed  Google Scholar 

  28. Godthelp, B. C., Artwert, F., Joenje, H. & Zdzienicka, M. Z. Impaired DNA damage-induced nuclear RAD51 foci formation uniquely characterizes Fanconi anemia group D1. Oncogene 21, 5002–5005 (2002)

    Article  CAS  Google Scholar 

  29. Tarsounas, M., Davies, D. & West, S. C. BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene 22, 1115–1123 (2003)

    Article  CAS  Google Scholar 

  30. Lee, M., Daniels, M. J. & Venkitaraman, A. R. Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene 23, 865–872 (2004)

    Article  CAS  Google Scholar 

  31. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410 (1999)

    Article  CAS  Google Scholar 

  32. Wohlschlegel, J. A., Dwyer, B. T., Takeda, D. Y. & Dutta, A. Mutational analysis of the Cy motif from p21 reveals sequence degeneracy and specificity for different cyclin-dependent kinases. Mol. Cell. Biol. 21, 4868–4874 (2001)

    Article  CAS  Google Scholar 

  33. Bertwistle, D. et al. Nuclear location and cell cycle regulation of the BRCA2 protein. Cancer Res. 57, 5485–5488 (1997)

    CAS  PubMed  Google Scholar 

  34. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995)

    Article  ADS  CAS  Google Scholar 

  35. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001)

    Article  ADS  CAS  Google Scholar 

  36. Jinno, S. et al. Cdc25 is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556 (1994)

    Article  CAS  Google Scholar 

  37. Yang, H. J. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1-ssDNA structure. Science 297, 1837–1848 (2002)

    Article  ADS  CAS  Google Scholar 

  38. Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1016 (2004)

    Article  ADS  CAS  Google Scholar 

  39. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004)

    Article  CAS  Google Scholar 

  40. Tutt, A. et al. Mutation in BRCA2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 20, 4704–4716 (2001)

    Article  CAS  Google Scholar 

  41. Tutt, A. et al. Cell cycle and genetic background dependence of the effect of loss of BRCA2 on ionizing radiation sensitivity. Oncogene 22, 2926–2931 (2003)

    Article  CAS  Google Scholar 

  42. Donoho, G. et al. Deletion of BRCA2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice. Genes Chromosom. Cancer 36, 317–331 (2003)

    Article  CAS  Google Scholar 

  43. Baumann, P., Benson, F. E., Hajibagheri, N. & West, S. C. Purification of human RAD51 protein by selective spermidine precipitation. Mutat. Res. DNA Repair 384, 65–72 (1997)

    Article  CAS  Google Scholar 

  44. Brown, N. R. et al. The crystal structure of cyclin A. Structure 3, 1235–1247 (1995)

    Article  MathSciNet  CAS  Google Scholar 

  45. Moore, J. D., Kirk, J. A. & Hunt, T. Unmasking the S-phase-promoting potential of cyclin B1. Science 300, 987–990 (2003)

    Article  ADS  CAS  Google Scholar 

  46. Pierce, A. J., Hu, P., Han, M. G., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001)

    Article  CAS  Google Scholar 

  47. Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999)

    Article  CAS  Google Scholar 

  48. Richardson, C., Moynahan, M. E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12, 3831–3842 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Venkitaraman for providing GST–B2-1 to B2-9. F.E. and N.C are recipients of postdoctoral fellowships from the Human Frontier Scientific Program, and Y.L. is a fellow of the American Cancer Society. This work was supported by Cancer Research UK, the Swiss Bridge Fund and the Breast Cancer Campaign (S.C.W.), and by the Emerald Foundation and an NIH grant (M.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. West.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esashi, F., Christ, N., Gannon, J. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005). https://doi.org/10.1038/nature03404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03404

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing