Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume


The two parallel chains of Hawaiian volcanoes (‘Loa’ and ‘Kea’) are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Small-scale heterogeneity in the Hawaiian plume revealed by the HSDP core, Mauna Kea.
Figure 2: The Loa–Kea compositional division of the Hawaiian plume.
Figure 3: Geographic extension of the Loa–Kea compositional boundary.


  1. 1

    Dana, J. D. Geology, United States Exploring Expedition, during the years 1838–1839, 1840, 1841, 1842 Vol 10 (C. Sherman, Philadelphia, 1849)

    Google Scholar 

  2. 2

    Jackson, E. D., Shaw, H. R. & Bargar, K. E. Calculated geochronology and stress field orientations along the Hawaiian chain. Earth Planet. Sci. Lett. 26, 145–155 (1975)

    ADS  Article  Google Scholar 

  3. 3

    Dalrymple, G. B., Silver, E. A. & Jackson, E. D. Origin of the Hawaiian islands. Am. Sci. 61, 294–308 (1973)

    ADS  Google Scholar 

  4. 4

    Stille, P., Unruh, D. M. & Tatsumoto, M. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature 304, 25–29 (1983)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Tatsumoto, M. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett. 38, 63–87 (1978)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hauri, E., Lassiter, J. C. & DePaolo, D. J. Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res. 101, 11793–11806 (1996)

    ADS  Article  Google Scholar 

  7. 7

    Kurz, M. D., Kenna, T. C., Lassiter, J. C. & DePaolo, D. J. Helium isotopic evolution of Mauna Kea Volcano: first results from the 1-km drill core. J. Geophys. Res. 101, 11781–11791 (1996)

    ADS  Article  Google Scholar 

  8. 8

    Lassiter, J. C., DePaolo, D. J. & Tatsumoto, M. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaiian Scientific Drilling Project. J. Geophys. Res. 101, 11769–11780 (1996)

    ADS  Article  Google Scholar 

  9. 9

    DePaolo, D. J. High-frequency isotopic variations in the Mauna Kea tholeiitic basalt sequence: melt zone dispersivity and chromatography. J. Geophys. Res. 101, 11855–11864 (1996)

    ADS  Article  Google Scholar 

  10. 10

    Sharp, W. A. & Renne, P. R. 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii. Geochem. Geophys. Geosyst. (in the press)

  11. 11

    Eisele, J., Abouchami, W., Galer, S. J. G. & Hofmann, A. W. The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000339 (2003)

  12. 12

    Blichert-Toft, J., Weis, D., Maerschalk, C., Agranier, A. & Albarede, F. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem. Geophys. Geosyst. 4, 8704, doi:10.1029/2002GC000340 (2003)

    ADS  Article  Google Scholar 

  13. 13

    Farnetani, C. G., Legras, B. & Tackley, P. J. Mixing and deformation in mantle plumes. Earth Planet. Sci. Lett. 196, 1–15 (2002)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Galer, S. J. G. Optimal double and triple spiking for high precision lead isotopic measurement. Chem. Geol. 157, 255–274 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem. Geol. 169, 187–209 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Stolper, E. M., Sherman, S., Garcia, M. O., Baker, M. & Seaman, C. Glasses in the submarine section of the HSDP-2 drill core, Hilo, Hawaii. Geochem. Geophys. Geosyst. 5, doi:10.1029/2003GC000553 (2004)

  17. 17

    Kurz, M. D., Curtice, J., Lott, D. E. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosyst. 5, doi:10.1029/2002GC000439 (2004)

  18. 18

    Bryce, J. G. & DePaolo, D. J. Sr and Nd variations in Mauna Kea lavas: preliminary results from analyses from the 1999 Hawaiian Scientific Drilling Project. Eos Trans. AGU 81, abstr. V12C–01 (2000)

  19. 19

    Galer, S. J. G. & O'Nions, R. K. Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316, 778–782 (1985)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Garcia, M. O., Muenow, D. W. & Aggrey, K. E. Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses. J. Geophys. Res. 94, 10525–10538 (1989)

    ADS  Article  Google Scholar 

  21. 21

    Yang, H. J., Frey, F. A., Garcia, M. O. & Clague, D. A. Submarine lavas from Mauna Kea Volcano, Hawaii: implications for Hawaiian shield stage processes. J. Geophys. Res. 99, 15577–15594 (1994)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Easton, R. M. in Volcanism in Hawaii (eds Decker, R. W., Wright, T. L. & Stauffer, P. H.) 243–260 (US Geological Survey Prof. Pap. 1350, Boulder, Colorado, 1987)

    Google Scholar 

  23. 23

    Quane, S. L., Garcia, M. O., Guillou, H. & Hulsebosch, T. P. Magmatic history of the East Rift Zone of Kilauea Volcano, Hawaii based on drill core from SOH 1. J. Volcanol. Geotherm. Res. 102, 319–338 (2000)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Lipman, P. W., Sisson, T. W., Ui, T., Naka, J. & Smith, J. R. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, M. O., Naka, J. & Aramaki, S.) 161–191 (AGU, Washington, DC, 2002)

    Google Scholar 

  25. 25

    DePaolo, D. J., Bryce, J. G., Dodson, A., Shuster, D. L. & Mack Kennedy, B. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem. Geophys. Geosyst. 2, doi:10.1029/2000GC000139 (2001)

  26. 26

    Hauri, E. H., Whitehead, J. A. & Hart, S. R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J. Geophys. Res. 99, 24275–24300 (1994)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Loper, D. E. & Stacey, F. D. The dynamical and thermal structure of deep mantle plumes. Phys. Earth Planet. Inter. 33, 304–317 (1983)

    ADS  Article  Google Scholar 

  28. 28

    Olson, P., Schubert, G. & Anderson, C. Structure of axisymmetric mantle plumes. J. Geophys. Res. 98, 6829–6844 (1993)

    ADS  Article  Google Scholar 

  29. 29

    Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, New York, 2001)

    Google Scholar 

  30. 30

    Zindler, A. & Hart, S. R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Eisele, J. et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197–212 (2002)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Blichert-Toft, J., Albarède, F. & Frey, F. Hf isotopic evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999)

    CAS  Article  Google Scholar 

  33. 33

    Tanaka, R. & Nakamura, E. in Hawaiian Volcanoes: Deep Underwater Perspectives (eds Takahashi, E., Lipman, P. W., Garcia, M. O., Naka, J. & Aramaki, S.) 311–332 (AGU, Washington, DC, 2002)

    Google Scholar 

  34. 34

    Fekiacova, Z. & Abouchami, W. Pb isotopic evolution of Koolau volcano (Oahu, Hawaii). Eos Trans. AGU 84, V32A-0991 (2003)

    Google Scholar 

  35. 35

    Clague, D. A. & Dalrymple, G. B. in The Eastern Pacific Ocean and Hawaii (eds Winterer, E. L., Hussong, D. M. & Decker, R. W.) 188–217 (Geological Society of America, Boulder, Colorado, 1989)

    Google Scholar 

  36. 36

    Wessel, P. & Kroenke, L. A geometric technique for relocating hotspots and refining absolute plate motions. Nature 387, 365–369 (1997)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Hieronymus, C. F. & Bercovici, D. Discrete alternating hotspot islands formed by interaction of magma transport and lithospheric flexure. Nature 397, 604–607 (1999)

    ADS  CAS  Article  Google Scholar 

  38. 38

    ten Brink, U. Volcano spacing and plate rigidity. Geology 19, 397–400 (1991)

    ADS  Article  Google Scholar 

  39. 39

    Hauri, E. H. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Kellog, L. H., Hager, B. H. & van der Hilst, R. V. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999)

    ADS  Article  Google Scholar 

  41. 41

    Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Farnetani, C. & Samuel, H. Dynamics of thermochemical plumes. Eos Trans. AGU 85, V44B–03 (2004)

  43. 43

    Kerr, R. C. & Meriaux, C. Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, doi:10.1029/2004GC000749 (2004)

Download references


We thank M. Garcia, H. West, and the HSDP team for providing samples, and J. Bryce for providing updated Nd isotope data for HSDP-2. Comments from M. Garcia and E. Takahashi on Nuuanu landslides stratigraphy, and reviews from E. Hauri and B. Hanan were appreciated.

Author information



Corresponding author

Correspondence to W. Abouchami.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

Triple spike Pb isotope data on Hawaiian lavas. (XLS 53 kb)

Supplementary Table S2

Regression parameters for Hawaiian Pb isotope arrays. (XLS 17 kb)

Supplementary Table S3

F-test statistics of the Loa and Kea regression trends. (DOC 39 kb)

Supplementary Figure S1

Triple spike Pb isotope data of Hawaiian shield stage lavas plotted in Pb isotope space. (PDF 183 kb)

Supplementary Figure S2

Schematic cartoon of the Hawaiian plume structure based on triple spike Pb isotope data in Hawaiian lavas. (PDF 415 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abouchami, W., Hofmann, A., Galer, S. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing