Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-electron dissociation of single molecules by atomic manipulation at room temperature


Using the tip of a scanning tunnelling microscope (STM) to mechanically manipulate individual atoms and molecules on a surface is now a well established procedure1,2. Similarly, selective vibrational excitation of adsorbed molecules with an STM tip to induce motion or dissociation has been widely demonstrated3,4. Such experiments are usually performed on weakly bound atoms that need to be stabilized by operating at cryogenic temperatures. Analogous experiments at room temperature5 are more difficult, because they require relatively strongly bound species that are not perturbed by random thermal fluctuations. But manipulation can still be achieved through electronic excitation of the atom or molecule by the electron current6,7,8,9,10,11 tunnelling between STM tip and surface at relatively high bias voltages10,11, typically 1–5 V. Here we use this approach to selectively dissociate chlorine atoms from individual oriented chlorobenzene molecules adsorbed on a Si(111)-7 × 7 surface. We map out the final destination of the chlorine daughter atoms, finding that their radial and angular distributions depend on the tunnelling current and hence excitation rate. In our system, one tunnelling electron has nominally sufficient energy to induce dissociation, yet the process requires two electrons. We explain these observations by a two-electron mechanism that couples vibrational excitation and dissociative electron attachment steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissociation of individual chlorobenzene molecules.
Figure 2: Radial distributions of daughter chlorine atoms.
Figure 3: Angle-resolved dissociation.
Figure 4: Dynamics of molecular dissociation.

Similar content being viewed by others


  1. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)

    Article  ADS  CAS  Google Scholar 

  2. Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H.-P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Fishlock, T. W., Oral, A., Egdell, R. G. & Pethica, J. B. Manipulation of atoms across a surface at room temperature. Nature 404, 743–745 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Salam, G. P., Persson, M. & Palmer, R. E. Possibility of coherent multiple excitation in atom transfer with a scanning tunneling microscope. Phys. Rev. B 49, 10655–10662 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Stipe, B. C. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Lauhon, L. J. & Ho, W. Control and characterization of a multistep unimolecular reaction. Phys. Rev. Lett. 84, 1527–1530 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Lu, P. H., Polanyi, J. C. & Rogers, D. Electron-induced “localized atomic reaction” (LAR): chlorobenzene adsorbed on Si(111) 7 × 7. J. Chem. Phys. 111, 9905–9907 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Soukiassian, L., Mayne, A. J., Carbone, M. & Dujardin, G. Atomic-scale desorption of H atoms from the Si(100)-2 × 1:H surface: inelastic electron interactions. Phys. Rev. B 68, 035303 (2003)

    Article  ADS  Google Scholar 

  12. Boland, J. J. & Villarrubia, J. S. Formation of Si(111)-(1 × 1)Cl. Phys. Rev. B 41, 9865–9870 (1990)

    Article  ADS  CAS  Google Scholar 

  13. Nakamura, Y., Mera, Y. & Maeda, K. Diffusion of chlorine atoms on Si(111)-(7 × 7) surface enhanced by electron injection from scanning tunneling microscope tips. Surf. Sci. 487, 127–134 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Brune, H., Wintterlin, J., Behm, R. J. & Ertl, G. Surface migration of “hot” adatoms in the course of dissociative chemisorption of oxygen on Al(111). Phys. Rev. Lett. 68, 624–626 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Cao, Y., Deng, J. F. & Xu, G. Q. Stereo-selective binding of chlorobenzene on Si(111)-7 × 7. J. Chem. Phys. 112, 4759–4767 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Sloan, P. A., Hedouin, M. F. G., Palmer, R. E. & Persson, M. Mechanism of molecular manipulation with the scanning tunneling microscope at room temperature: chlorobenzene/Si(111)-(7 × 7). Phys. Rev. Lett. 91, 118301 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Li, Z.-H., Li, Y.-C., Wang, W.-N., Cao, Y. & Fan, K.-N. A density functional theory study on the adsorption of chlorobenzene on the Si(111)-7 × 7 surface. J. Phys. Chem. B 108, 14049–14055 (2004)

    Article  CAS  Google Scholar 

  18. Jensen, J. A., Yan, C. & Kummel, A. C. Direct chemisorption site selectivity for molecular halogens on the Si(111)-(7 × 7) surface. Phys. Rev. Lett. 76, 1388–1391 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Palmer, R. E. & Rous, P. J. Resonances in electron scattering by molecules on surfaces. Rev. Mod. Phys. 64, 383–440 (1992)

    Article  ADS  CAS  Google Scholar 

  20. Alavi, S. et al. Inducing desorption of organic molecules with a scanning tunneling microscope: theory and experiments. Phys. Rev. Lett. 85, 5372–5375 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Komeda, T., Kim, Y., Fujita, Y., Sainoo, Y. & Kawai, M. Local chemical reaction of benzene on Cu(110) via STM-induced excitation. J. Chem. Phys. 120, 5347–5352 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Jiang, G., Polanyi, J. C. & Rogers, D. Electron and photon irradiation of benzene and chlorobenzene on Si(111)7 × 7. Surf. Sci. 544, 147–161 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Martin, F. et al. DNA strand breaks induced by 0–4 eV electrons: the role of shape resonances. Phys. Rev. Lett. 93, 068101 (2004)

    Article  ADS  Google Scholar 

  24. Dixon-Warren, St-J., Jensen, E. T. & Polanyi, J. C. Direct evidence for charge-transfer photodissociation at a metal surface: CCl4/Ag(111). Phys. Rev. Lett. 67, 2395–2398 (1991)

    Article  ADS  CAS  Google Scholar 

  25. Palmer, R. E. Electron-molecule dynamics at surfaces. Prog. Surf. Sci. 41, 51–108 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Dressler, R., Allan, M. & Haselbach, E. Symmetry control in bond cleavage processes: dissociative electron attachment to unsaturated halocarbons. Chimia 39, 385–389 (1985)

    CAS  Google Scholar 

  27. Modelli, A. Electron attachment and intramolecular electron transfer in unsaturated chloroderivatives. Phys. Chem. Chem. Phys. 5, 2923–2930 (2003)

    Article  CAS  Google Scholar 

  28. Skalicky, T., Chollet, C., Pasquier, N. & Allan, M. Properties of the π* and σ* states of the chlorobenzene anion determined by electron impact spectroscopy. Phys. Chem. Chem. Phys. 4, 3583–3590 (2002)

    Article  CAS  Google Scholar 

  29. Fontanesi, C., Baraldi, P. & Marcaccio, M. On the dissociation dynamics of the benzyl chloride radical anion. An ab initio dynamic reaction coordinate analysis study. J. Mol. Struct. (Theochem) 548, 13–20 (2001)

    Article  CAS  Google Scholar 

  30. Guyot-Sionnest, P., Dumas, P., Chabal, Y. J. & Higashi, G. S. Lifetime of an adsorbate-substrate vibration: H on Si(111). Phys. Rev. Lett. 64, 2156–2159 (1990)

    Article  ADS  CAS  Google Scholar 

Download references


We thank the EPSRC and the European Research Training Networks ‘Manipulation of individual atoms and molecules’ and AMMIST for support. P.A.S. acknowledges studentship support from the School of Physics and Astronomy and from EPSRC. We also thank J. C. Polanyi for pointing us in the direction of vibrationally activated chemical reactions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. E. Palmer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, P., Palmer, R. Two-electron dissociation of single molecules by atomic manipulation at room temperature. Nature 434, 367–371 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing