Abstract
East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.
Access options
Subscribe to Journal
Get full journal access for 1 year
220,50 €
only 4,32 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Jones, L. M. & Molnar, P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. 84, 3596–3608 (1979)
- 2.
Abercrombie, R. E. & Mori, J. Occurrence patterns of foreshocks to large earthquakes in the Western United States. Nature 381, 303–307 (1996)
- 3.
Felzer, K., Abercrombie, R. E. & Ekstrom, G. A common origin for aftershocks, foreshocks, and multiplets. Bull. Seismol. Soc. Am. 94(1), 88–98 (2004)
- 4.
Helmstetter, A., Sornette, D. & Grasso, J.-R. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. J. Geophys. Res. 108, doi:10.1029/2002JB001991 (2003)
- 5.
Dodge, D. A., Ellsworth, W. E. & Beroza, G. C. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J. Geophys. Res. 101, 22371–22392 (1996)
- 6.
Geller, R. J., Jackson, D. D., Kagan, Y. Y. & Mulargia, F. Earthquakes cannot be predicted. Science 275, 1616–1617 (1997)
- 7.
Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, Southwest Japan. Geophys. Res. Lett. 26, 3237–3240 (1999)
- 8.
Ozawa, S. et al. Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science 298, 1009–1012 (2002)
- 9.
Ozawa, S. et al. Characteristic silent earthquakes in the eastern part of the Boso peninsula, Central Japan. Geophys. Res. Lett. 30, doi:10.1029/2002GL016665 (2003)
- 10.
Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001)
- 11.
Kanamori, H. & Cipar, J. Focal process of the great Chilean earthquake. Phys. Earth Planet. Inter. 9, 128–136 (1974)
- 12.
Reasenberg, P. A. Foreshock occurrence before large earthquakes. J. Geophys. Res. 104, 4755–4768 (1999)
- 13.
Brune, J. N. Seismic moment, seismicity, and rate of slip along major fault zones. J. Geophys. Res. 73, 777–784 (1968)
- 14.
Bird, P., Kagan, Y. & Jackson, D. in Plate Boundary Zones (ed. Freymueller, S. S. a. J.) 203–218 (AGU, Washington DC, 2002)
- 15.
Boettcher, M. S. & Jordan, T. H. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res. 109, doi:10.1029/2004JB003110 (2004)
- 16.
Bird, P. & Kagan, Y. Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic settings. Bull Seismol. Soc. Am. 94(6), 2380–2399 (2004)
- 17.
Perez-Campos, X., McGuire, J. J. & Beroza, G. C. Resolution of the slow earthquake/apparent stress paradox for oceanic transform fault earthquakes. J. Geophys. Res. 108, doi:10.1029/2002JB002312 (2003)
- 18.
Kanamori, H. & Stewart, G. S. Mode of strain release along the Gibbs fracture zone, Mid-Atlantic Ridge. Phys. Earth Planet. Inter. 11, 312–332 (1976)
- 19.
Ihmlé, P. F. & Jordan, T. H. Teleseismic search for slow precursors to large earthquakes. Science 266, 1547–1551 (1994)
- 20.
McGuire, J. J., Ihmlé, P. F. & Jordan, T. H. Time-domain observations of a slow precursor to the 1994 Romanche transform earthquake. Science 274, 82–85 (1996)
- 21.
McGuire, J. J. & Jordan, T. H. Further evidence for the compound nature of slow earthquakes: The Prince Edward Island earthquake of April 28, 1997. J. Geophys. Res. 105, 7819–7828 (2000)
- 22.
Forsyth, D. W., Yang, Y., Mangriotis, M.-D. & Shen, Y. Coupled seismic slip on adjacent oceanic transform faults. J. Geophys. Res. 30, doi:10.1029/2002GL016454 (2003)
- 23.
Abercrombie, R. E. & Ekstrom, G. Earthquake slip on oceanic transform faults. Nature 410, 74–77 (2001)
- 24.
Fox, C. G., Matsumoto, H. & Lau, T. K. Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. J. Geophys. Res. 163, 4183–4206 (2001)
- 25.
Fox, C. G. et al. Acoustic detection of seafloor spreading. J. Geophys. Res. 22, 131–134 (1995)
- 26.
Smith, D. et al. Hydroacoustic monitoring of seismicity at the slow-spreading Mid-Atlantic Ridge. Geophys. Res. Lett. 29, 10.1029/2001GL013912 (2002)
- 27.
McGuire, J. J. Immediate foreshock sequences of oceanic transform earthquakes on the East Pacific Rise. Bull. Seismol. Soc. Am. 93, 948–952 (2003)
- 28.
Ekstrom, G., Dziewonski, A. M., Maternovskaya, N. N. & Nettles, M. Global seismicity of 2001; centroid-moment tensor solutions for 961 earthquakes. Phys. Earth Planet. Inter. 136, 165–185 (2003)
- 29.
Helmstetter, A. & Sornette, A. Bath's law derived from the Gutenberg-Richter law and from aftershock properties. Geophys. Res. Lett. 30, doi:10.1029/2003GL018186 (2003)
- 30.
Helmstetter, A. & Sornette, D. Importance of direct and indirect triggered seismicity in the ETAS model of seismicity. Geophys. Res. Lett. 30, 4, doi:10.129/2003GL017670 (2003)
- 31.
Ogata, Y. Statistical models for earthquake occurrence and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988)
- 32.
Bohnenstiehl, D. R., Tolstoy, M., Dziak, R. P., Fox, C. G. & Smith, D. Aftershocks in the mid-ocean ridge environment: An analysis using hydroacoustic data. Tectonophysics 354, 49–70 (2002)
- 33.
Helmstetter, A. Is earthquake triggering driven by small earthquakes? Phys. Rev. Lett. 91, 058501 (2003)
- 34.
Helmstetter, A., Kagan, Y. & Jackson, D. D. Importance of small earthquakes for stress transfers and earthquake triggering. J. Geophys. Res. (in the press)
- 35.
Helmstetter, A. & Sornette, D. Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res. 107, doi:10.1029/2001JB001580 (2002)
- 36.
Hanson, J. A. & Given, H. K. Accurate azimuth estimates from a large aperture hydrophone array using T-phase waveforms. Geophys. Res. Lett. 25, 365–368 (1998)
- 37.
Aki, K. in Earthquake Prediction (eds Simpson, D. W. & Richards, P. G.) 556–574 (AGU, Washington DC, 1981)
- 38.
Keilis-Borok, V., Shebalin, P., Gabrielov, A. & Turcotte, D. Reverse tracing of short-term earthquake precursors. Phys. Earth Planet. Inter. 145, 75–85 (2004)
- 39.
Molchan, G. M. Earthquake prediction as a decision-making problem. Pure Appl. Geophys. 149, 233–247 (1997)
- 40.
Reasenberg, P. A. & Jones, L. M. Earthquake hazards after a mainshock in California. Science 243, 1173–1176 (1989)
- 41.
Reasenberg, P. A. & Jones, L. M. Earthquake aftershocks: Update. Science 265, 1251–1252 (1994)
- 42.
Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997)
- 43.
Kisslinger, C. & Jones, L. M. Properties of aftershock sequences in Southern California. J. Geophys. Res. 96, 11947–11958 (1991)
- 44.
Yamanaka, Y. & Shimazaki, K. Scaling relationship between the number of aftershocks and the size of the main shock. J. Phys. Earth 38, 305–324 (1990)
Acknowledgements
We thank R. Dziak for answering questions about details of the hydroacoustic earthquake catalogues, D. Bohnenstiehl for suggestions on clarifying the manuscript, A. Helmstetter for her help in understanding ETAS, and V. Keilis-Borok, I. Zaliapin, and L. Jones for discussions of earthquake prediction algorithms. J.J.McG. was supported by the Frank and Lisina Hoch Fund. M.S.B. was supported by the Deep Ocean Exploration Institute at WHOI. This work was supported by the NSF, SCEC and USGS.
Author information
Affiliations
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and
- Jeffrey J. McGuire
MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA
- Margaret S. Boettcher
Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA
- Thomas H. Jordan
Authors
Search for Jeffrey J. McGuire in:
Search for Margaret S. Boettcher in:
Search for Thomas H. Jordan in:
Competing interests
The authors declare that they have no competing financial interests.
Corresponding author
Correspondence to Jeffrey J. McGuire.
Supplementary information
PDF files
- 1.
Supplementary Notes
This file contains the Supplementary Discussion, Supplementary Tables S1-S4 and Supplementary Figures S1-S4.
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
1.
Variations in precursory slip behavior resulting from frictional heterogeneity
Progress in Earth and Planetary Science (2018)
-
2.
Earthquake nucleation and fault slip complexity in the lower crust of central Alaska
Nature Geoscience (2018)
-
3.
Probabilistic aftershock hazard analysis, two case studies in West and Northwest Iran
Journal of Seismology (2018)
-
4.
Earthquake magnitude prediction in Hindukush region using machine learning techniques
Natural Hazards (2017)
-
5.
Seismic precursors linked to highly compressible fluids at oceanic transform faults
Nature Geoscience (2014)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.