Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic effects on sperm design in the zebra finch


Sperm design and function are important determinants of male reproductive success and are expected to be under strong selection1,2. The way that spermatozoa phenotypes evolve is poorly understood, because there have been few studies of the quantitative genetics of sperm3,4,5. Here we show, in the zebra finch Taeniopygia guttata, an extraordinary degree of inter-male variation in sperm design that is independent of sperm swimming velocity. A quantitative genetics study using data from over 900 zebra finches in a complex breeding experiment showed that sperm head, mid-piece and flagellum length are heritable, that negative genetic correlations exist between sperm traits, and that significant indirect (maternal) genetic effects exist. Selection on the zebra finch sperm phenotype may be low because sperm competition is infrequent in this species6, and this, in combination with negative genetic correlations and maternal genetic effects, may account for the variation in sperm phenotype between males. These results have important implications for the evolution of sperm in other taxa.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Examples of sperm of approximately the same total length from two zebra finch males showing the marked difference in size of the mid-piece (that is, the mitochondrial helix (bright green and indicated by a horizontal line)).
Figure 2: Relationships between zebra finch sperm velocity (VAP) and sperm traits.
Figure 3: Relationship between sperm flagellum and mid-piece length.


  1. Parker, G. A. in Sperm Competition and Sexual Selection (eds Birkhead, T. R. & Møller, A. P.) 3–54 (Academic, London, 1998)

    Book  Google Scholar 

  2. Birkhead, T. R. & Pizzari, T. Post-copulatory sexual selection. Nature Rev. Genet. 3, 262–273 (2002)

    CAS  Article  Google Scholar 

  3. Beatty, R. A. The genetics of the mammalian gamete. Biol. Rev. 45, 73–119 (1980)

    Article  Google Scholar 

  4. Morrow, E. H. & Gage, M. J. G. Artificial selection and heritability of sperm length in Gryllus bimaculatus . Heredity 87, 356–362 (2001)

    CAS  Article  Google Scholar 

  5. Simmons, L. W. & Kotiaho, J. S. Evolution of ejaculates: patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. Evolution 56, 1622–1631 (2002)

    Article  Google Scholar 

  6. Birkhead, T. R., Burke, T., Zann, R., Hunter, F. M. & Krupa, A. P. Extra-pair paternity and intraspecific brood parasitism in wild zebra finches Taeniopygia guttata, revealed by DNA fingerprinting. Behav. Ecol. Sociobiol. 27, 315–324 (1990)

    Article  Google Scholar 

  7. Cohen, J. & McNaughton, D. C. Spermatozoa: the probable selection of a small population by the genital tract of the female rabbit. J. Reprod. Fertil. 39, 297–310 (1974)

    CAS  Article  Google Scholar 

  8. Birkhead, T. R., Møller, A. P. & Sutherland, W. J. Why do females make it so difficult for males to fertilize their eggs? J. Theor. Biol. 161, 51–60 (1993)

    Article  Google Scholar 

  9. Jamieson, B. G. M. in The Male Gamete: From Basic Science to Clinical Applications (ed. Gagnon, C.) 304–331 (Cache River Press, Vienna, Illinois, 1999)

    Google Scholar 

  10. Cohen, J. Reproduction (Butterworths, London and Boston, 1977)

    Google Scholar 

  11. Morrow, E. H. & Gage, M. J. G. Consistent significant variation between individual males in spermatozoal morphometry. J. Zool. (Lond.) 253, 147–153 (2001)

    Article  Google Scholar 

  12. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004)

    Article  Google Scholar 

  13. Boldman, K. G., Kriese, L. A., Van Vleck, L. D., Van Tassell, C. P. & Kachman, S. D. A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances. Revised United States Department of Agriculture–Agricultural Research Station (US Meat Animal Research Center, Clay Center, Nebraska, 1995)

    Google Scholar 

  14. Birkhead, T. R. & Fletcher, F. Male phenotype and ejaculate quality in the zebra finch Taeniopygia guttata . Proc. R. Soc. Lond. B 262, 329–344 (1995)

    ADS  CAS  Article  Google Scholar 

  15. Cardullo, R. A. & Baltz, J. M. Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil. Cytoskel. 19, 180–188 (1991)

    CAS  Article  Google Scholar 

  16. Froman, D. P. & Feltmann, A. J. Sperm mobility: A quantitative trait in the domestic fowl (Gallus domesticus). Biol. Reprod. 58, 379–384 (1998)

    CAS  Article  Google Scholar 

  17. Birkhead, T. R., Martinez, J. G., Burke, T. & Froman, D. P. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. Lond. B 266, 1759–1764 (1999)

    CAS  Article  Google Scholar 

  18. Anderson, M. J. & Dixson, A. F. Sperm competition: Motility and the midpiece in primates. Nature 416, 496 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Birkhead, T. R., Fletcher, F., Pellatt, E. J. & Staples, A. Ejaculate quality and the success of extra-pair copulations in the zebra finch. Nature 377, 422–423 (1995)

    ADS  CAS  Article  Google Scholar 

  20. Wolf, J. B., Brodie, E. D., Cheverud, J. M., Moore, A. J. & Wade, M. J. Evolutionary consequences of indirect genetic effects. Trends Ecol. Evol. 13, 64–69 (1998)

    CAS  Article  Google Scholar 

  21. Frank, S. A. & Hurst, L. D. Mitochondria and male disease. Nature 383, 224 (1996)

    ADS  CAS  Article  Google Scholar 

  22. Gemmel, N. J., Metcalf, V. J. & Allendorf, F. W. Mother's curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol. Evol. 19, 238–244 (2004)

    Article  Google Scholar 

  23. Zeh, J. Sexy sons: a dead end of cytoplasmic genes. Proc. R. Soc. Lond. B (Suppl.) 271, S306–S309 (2004)

    CAS  Article  Google Scholar 

  24. Royle, N. J., Surai, P. F. & Hartley, I. R. The effect of variation in dietary intake on maternal deposition of antioxidants in zebra finch eggs. Funct. Ecol. 17, 472–481 (2003)

    Article  Google Scholar 

  25. Cheverud, J. M., Leamy, L. J., Atchley, W. R. & Rutledge, J. J. Quantitative genetics and the evolution of ontogeny I. Ontogenetic changes in quantitative genetic variance components in randombred mice. Genet. Res. 42, 65–75 (1983)

    Article  Google Scholar 

  26. McFarlane, R. W. The taxonomic significance of avian sperm. Proc. 13th Int. Orn. Congr. 1, 91–102 (1963)

    Google Scholar 

  27. Roff, D. A. The evolution of the G-matrix: selection or drift? Heredity 84, 135–142 (2000)

    Article  Google Scholar 

  28. Zann, R. A. The Zebra Finch: A Synthesis of Field and Laboratory Studies (Oxford Univ. Press, Oxford, 1996)

    Google Scholar 

  29. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998)

    Google Scholar 

  30. Purvis, A. & Rambaut, A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput. Appl. Biosci. 11, 247–251 (1995)

    CAS  PubMed  Google Scholar 

Download references


We are grateful to the following for technical assistance: A. Bamford, H. Basford, S. Bawden, S. Bradish, L. Birkhead, A. Blake, M. Hudson, K. Hutchence, R. Linacre, B. Mappin, A. MacDonald, the late O. Scott-Roberts, D. Rose, J. Shutt, K. Swinglehurst, L. Turton and E. Varsey. We thank F. M. Hunter, I. M. Matthews, N. Roddis and P. Young for help with the project, and A. Beckerman, J. D. Biggins, D. Coltman, J. Cummins, C. Haley, L. Keller, A. Moore, B. Sheldon, J. Slate, J. St John and D. Woolley for advice and/or comments. This study was funded by a NERC research grant to T.R.B.Authors' contributions T.R.B. managed the entire project and wrote the manuscript; E.J.P. managed the birds; P.B. and R.Y. measured the sperm; and H.C.-J. conducted the genetic analyses.

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. R. Birkhead.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Birkhead, T., Pellatt, E., Brekke, P. et al. Genetic effects on sperm design in the zebra finch. Nature 434, 383–387 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing