An anaerobic mitochondrion that produces hydrogen


Hydrogenosomes are organelles that produce ATP and hydrogen1, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates2. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolically quite different, just like mitochondria where large differences also exist3. These differences have led to a continuing debate about the evolutionary origin of hydrogenosomes4,5. Here we show that the hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis, which thrives in the hindgut of cockroaches, have retained a rudimentary genome encoding components of a mitochondrial electron transport chain. Phylogenetic analyses reveal that those proteins cluster with their homologues from aerobic ciliates. In addition, several nucleus-encoded components of the mitochondrial proteome, such as pyruvate dehydrogenase and complex II, were identified. The N. ovalis hydrogenosome is sensitive to inhibitors of mitochondrial complex I and produces succinate as a major metabolic end product—biochemical traits typical of anaerobic mitochondria3. The production of hydrogen, together with the presence of a genome encoding respiratory chain components, and biochemical features characteristic of anaerobic mitochondria, identify the N. ovalis organelle as a missing link between mitochondria and hydrogenosomes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A 14,027-bp fragment (mtg 1) of the hydrogenosomal genome of N. ovalis var.
Figure 2: Phylogenetic analysis of hydrogenosomal genes.
Figure 3: Hydrogenosomes of N. ovalis exhibit complex I activity.


  1. 1

    Müller, M. The hydrogenosome. J. Gen. Microbiol. 39, 2879–2889 (1993)

    Article  Google Scholar 

  2. 2

    Roger, A. J. Reconstructing early events in eukaryotic evolution. Am. Nat. 154, S146–S163 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Tielens, A. G. M., Rotte, C., van Hellemond, J. J. & Martin, W. Mitochondria as we don't know them. Trends Biochem. Sci. 27, 564–572 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Embley, T. M. et al. Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55, 387–395 (2003)

    CAS  Article  Google Scholar 

  5. 5

    Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: From endosymbionts to organelles. Science 304, 253–257 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    van der Giezen, M., Sjollema, K. A., Artz, R. R., Alkema, W. & Prins, R. A. Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 408, 147–150 (1997)

    CAS  Article  Google Scholar 

  7. 7

    Clemens, D. L. & Johnson, P. J. Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol. Biochem. Parasitol. 106, 307–313 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Leon-Avila, G. & Tovar, J. Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiol. 150, 1245–1250 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (Oxford University Press, Oxford, UK, 1995)

    Google Scholar 

  10. 10

    Embley, T. M., Horner, D. A. & Hirt, R. P. Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol. Evol. 12, 437–441 (1997)

    CAS  Article  Google Scholar 

  11. 11

    Voncken, F. et al. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol. Microbiol. 44, 1441–1454 (2002)

    CAS  Article  Google Scholar 

  12. 12

    van der Giezen, M. et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 21, 572–579 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem. 382, 1521–1539 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Akhmanova, A. et al. A hydrogenosome with a genome. Nature 396, 527–528 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Brunk, C. F., Lee, L. C., Tran, A. B. & Li, J. Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res. 31, 1673–1682 (2003)

    CAS  Article  Google Scholar 

  17. 17

    Burger, G., Gray, M. W. & Lang, B. F. Mitochondrial genomes: anything goes. Trends Genet. 19, 709–716 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Dyall, S. D. et al. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431, 1103–1107 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    van Hoek, A. H. A. M. et al. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol. Biol. Evol. 17, 251–258 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Degli Esposti, M. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim. Biophys. Acta 1364, 222–235 (1998)

    CAS  Article  Google Scholar 

  22. 22

    Akhmanova, A. et al. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol. Microbiol. 32, 1103–1114 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Boxma, B. et al. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol. Microbiol. 51, 1389–1399 (2004)

    CAS  Article  Google Scholar 

  24. 24

    van Hellemond, J. J., Klockiewicz, M., Gaasenbeek, C. P. H., Roos, M. H. & Tielens, A. G. M. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J. Biol. Chem. 270, 31065–31070 (1995)

    CAS  Article  Google Scholar 

  25. 25

    Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Cotter, D., Guda, P., Fahy, E. & Subramaniam, S. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 32, D463–D467 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Voncken, F. G. J. et al. A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284, 103–112 (2002)

    CAS  Article  Google Scholar 

  28. 28

    van Hoek, A. H. A. M. et al. Voltage-dependent reversal of anodic galvanotaxis in Nyctotherus ovalis . J. Eukaryotic Microbiol. 46, 427–433 (1999)

    CAS  Article  Google Scholar 

  29. 29

    Koopman, W. J. H. et al. Membrane-initiated Ca2+ signals are reshaped during propagation to subcellular regions. Biophys. J. 81, 57–65 (2001)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Curtis, E. A. & Landweber, L. F. Evolution of gene scrambling in ciliate micronuclear genes. Ann. NY Acad. Sci. 870, 349–350 (1999)

    ADS  CAS  Article  Google Scholar 

Download references


We thank L. Landweber, J. Wong and W.-J. Chang for advice on the cloning of complete minichromosomes and for sharing the first sequence of a PDH gene in N. ovalis; S. van Weelden and H. de Roock for help in the metabolic studies; J. Brouwers for analysis of the quinones; G. Cremers, L. de Brouwer, A. Ederveen, A. Grootemaat, M. Hachmang, S. Huver, S. Jannink, N. Jansse, R. Janssen, M. Kwantes, B. Penders, G. Schilders, R. Talens, D. van Maassen, H. van Zoggel, M. Veugelink and P. Wijnhoven for help with the isolation of various N. ovalis sequences; and K. Sjollema for electron microscopy. G.W.M.v.d.S., S.Y.M.-v.d.S. and G.R. were supported by the European Union 5th framework grant ‘CIMES’. This work was also supported by equipment grants from ZON (Netherlands Organisation for Health Research and Development), NWO (Netherlands Organisation for Scientific Research), and the European Union 6th framework programme for research, priority 1 “Life sciences, genomics and biotechnology for health” to W.J.H.K..

Author information



Corresponding author

Correspondence to Johannes H. P. Hackstein.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Figures S1-S16 and a Supplementary Table for the study. (PDF 1898 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boxma, B., de Graaf, R., van der Staay, G. et al. An anaerobic mitochondrion that produces hydrogen. Nature 434, 74–79 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.