Abstract
Hydrogenosomes are organelles that produce ATP and hydrogen1, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates2. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolically quite different, just like mitochondria where large differences also exist3. These differences have led to a continuing debate about the evolutionary origin of hydrogenosomes4,5. Here we show that the hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis, which thrives in the hindgut of cockroaches, have retained a rudimentary genome encoding components of a mitochondrial electron transport chain. Phylogenetic analyses reveal that those proteins cluster with their homologues from aerobic ciliates. In addition, several nucleus-encoded components of the mitochondrial proteome, such as pyruvate dehydrogenase and complex II, were identified. The N. ovalis hydrogenosome is sensitive to inhibitors of mitochondrial complex I and produces succinate as a major metabolic end product—biochemical traits typical of anaerobic mitochondria3. The production of hydrogen, together with the presence of a genome encoding respiratory chain components, and biochemical features characteristic of anaerobic mitochondria, identify the N. ovalis organelle as a missing link between mitochondria and hydrogenosomes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The energy metabolism of Balantidium polyvacuolum inhabiting the hindgut of Xenocypris davidi
BMC Genomics Open Access 19 October 2023
-
Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans
BMC Biology Open Access 16 April 2021
-
Anaerobic endosymbiont generates energy for ciliate host by denitrification
Nature Open Access 03 March 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Müller, M. The hydrogenosome. J. Gen. Microbiol. 39, 2879–2889 (1993)
Roger, A. J. Reconstructing early events in eukaryotic evolution. Am. Nat. 154, S146–S163 (1999)
Tielens, A. G. M., Rotte, C., van Hellemond, J. J. & Martin, W. Mitochondria as we don't know them. Trends Biochem. Sci. 27, 564–572 (2002)
Embley, T. M. et al. Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55, 387–395 (2003)
Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: From endosymbionts to organelles. Science 304, 253–257 (2004)
van der Giezen, M., Sjollema, K. A., Artz, R. R., Alkema, W. & Prins, R. A. Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 408, 147–150 (1997)
Clemens, D. L. & Johnson, P. J. Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol. Biochem. Parasitol. 106, 307–313 (2000)
Leon-Avila, G. & Tovar, J. Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiol. 150, 1245–1250 (2004)
Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (Oxford University Press, Oxford, UK, 1995)
Embley, T. M., Horner, D. A. & Hirt, R. P. Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol. Evol. 12, 437–441 (1997)
Voncken, F. et al. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol. Microbiol. 44, 1441–1454 (2002)
van der Giezen, M. et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 21, 572–579 (2002)
Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem. 382, 1521–1539 (2001)
Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)
Akhmanova, A. et al. A hydrogenosome with a genome. Nature 396, 527–528 (1998)
Brunk, C. F., Lee, L. C., Tran, A. B. & Li, J. Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res. 31, 1673–1682 (2003)
Burger, G., Gray, M. W. & Lang, B. F. Mitochondrial genomes: anything goes. Trends Genet. 19, 709–716 (2003)
Dyall, S. D. et al. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431, 1103–1107 (2004)
Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004)
van Hoek, A. H. A. M. et al. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol. Biol. Evol. 17, 251–258 (2000)
Degli Esposti, M. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim. Biophys. Acta 1364, 222–235 (1998)
Akhmanova, A. et al. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol. Microbiol. 32, 1103–1114 (1999)
Boxma, B. et al. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol. Microbiol. 51, 1389–1399 (2004)
van Hellemond, J. J., Klockiewicz, M., Gaasenbeek, C. P. H., Roos, M. H. & Tielens, A. G. M. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J. Biol. Chem. 270, 31065–31070 (1995)
Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003)
Cotter, D., Guda, P., Fahy, E. & Subramaniam, S. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 32, D463–D467 (2004)
Voncken, F. G. J. et al. A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284, 103–112 (2002)
van Hoek, A. H. A. M. et al. Voltage-dependent reversal of anodic galvanotaxis in Nyctotherus ovalis . J. Eukaryotic Microbiol. 46, 427–433 (1999)
Koopman, W. J. H. et al. Membrane-initiated Ca2+ signals are reshaped during propagation to subcellular regions. Biophys. J. 81, 57–65 (2001)
Curtis, E. A. & Landweber, L. F. Evolution of gene scrambling in ciliate micronuclear genes. Ann. NY Acad. Sci. 870, 349–350 (1999)
Acknowledgements
We thank L. Landweber, J. Wong and W.-J. Chang for advice on the cloning of complete minichromosomes and for sharing the first sequence of a PDH gene in N. ovalis; S. van Weelden and H. de Roock for help in the metabolic studies; J. Brouwers for analysis of the quinones; G. Cremers, L. de Brouwer, A. Ederveen, A. Grootemaat, M. Hachmang, S. Huver, S. Jannink, N. Jansse, R. Janssen, M. Kwantes, B. Penders, G. Schilders, R. Talens, D. van Maassen, H. van Zoggel, M. Veugelink and P. Wijnhoven for help with the isolation of various N. ovalis sequences; and K. Sjollema for electron microscopy. G.W.M.v.d.S., S.Y.M.-v.d.S. and G.R. were supported by the European Union 5th framework grant ‘CIMES’. This work was also supported by equipment grants from ZON (Netherlands Organisation for Health Research and Development), NWO (Netherlands Organisation for Scientific Research), and the European Union 6th framework programme for research, priority 1 “Life sciences, genomics and biotechnology for health” to W.J.H.K..
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Supplementary Notes
This file contains the Supplementary Methods, Supplementary Figures S1-S16 and a Supplementary Table for the study. (PDF 1898 kb)
Rights and permissions
About this article
Cite this article
Boxma, B., de Graaf, R., van der Staay, G. et al. An anaerobic mitochondrion that produces hydrogen. Nature 434, 74–79 (2005). https://doi.org/10.1038/nature03343
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature03343
This article is cited by
-
The energy metabolism of Balantidium polyvacuolum inhabiting the hindgut of Xenocypris davidi
BMC Genomics (2023)
-
Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans
BMC Biology (2021)
-
Anaerobic endosymbiont generates energy for ciliate host by denitrification
Nature (2021)
-
Co-existence of multiple bacterivorous clevelandellid ciliate species in hindgut of wood-feeding cockroaches in light of their prokaryotic consortium
Scientific Reports (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.