Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shape coexistence and triaxiality in the superheavy nuclei

Abstract

Superheavy nuclei represent the limit of nuclear mass and charge; they inhabit the remote corner of the nuclear landscape, whose extent is unknown. The discovery of new elements with atomic numbers Z ≥ 110 has brought much excitement to the atomic and nuclear physics communities. The existence of such heavy nuclei hangs on a subtle balance between the attractive nuclear force and the disruptive Coulomb repulsion between protons that favours fission. Here we model the interplay between these forces using self-consistent energy density functional theory; our approach accounts for spontaneous breaking of spherical symmetry through the nuclear Jahn–Teller effect. We predict that the long-lived superheavy elements can exist in a variety of shapes, including spherical, axial and triaxial configurations. In some cases, we anticipate the existence of metastable states and shape isomers that can affect decay properties and hence nuclear half-lives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deformation properties of even–even superheavy nuclei calculated self-consistently in the (N,Z)-plane with the SLy4 nuclear energy density functional.
Figure 2: Qα values for even–even nuclei with 96 ≤ Z ≤ 118 obtained in the self-consistent calculations using the energy density functional SLy4.
Figure 3: Potential energy surfaces of the members of the α-decay chains of 294120 (ac) and 292116 (df) in the (Q20, Q22) plane calculated with the SLy4 energy density functional.
Figure 4: Contour map of the energy difference between oblate and prolate minima (or saddle points) in the energy surface of superheavy even–even nuclei.
Figure 5: Single-proton (a, b) and single-neutron (c, d) energy levels in the superheavy nucleus 292116176 obtained in self-consistent calculations with the SLy4 energy density functional.

Similar content being viewed by others

References

  1. Heenen, P.-H. & Nazarewicz, W. Quest for superheavy nuclei. Europhys. News 33, 1–9 (2002)

    Article  ADS  Google Scholar 

  2. Strutinsky, V. M. Shells in deformed nuclei. Nucl. Phys. A 122, 1–33 (1967)

    Article  ADS  Google Scholar 

  3. Sobiczewski, A., Gareev, F. A. & Kalinkin, B. N. Closed shells for Z > 82 and N > 126 in a diffuse potential well. Phys. Lett. 22, 500–502 (1966)

    Article  ADS  CAS  Google Scholar 

  4. Myers, W. D. & Swiatecki, W. J. Nuclear masses and deformations. Nucl. Phys. 81, 1–60 (1966)

    Article  CAS  Google Scholar 

  5. Nilsson, S. G. et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1–66 (1969)

    Article  ADS  CAS  Google Scholar 

  6. Ćwiok, S., Dobaczewski, J., Heenen, P.-H., Magierski, P. & Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211–246 (1996)

    Article  ADS  Google Scholar 

  7. Schwerdtfeger, P. & Seth, M. B. in Encyclopedia of Computational Chemistry Vol. 4, 2480–2494 (Wiley, New York, 1998)

    Google Scholar 

  8. Bender, M., Rutz, K., Reinhard, P.-G., Maruhn, J. A. & Greiner, W. Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999)

    Article  ADS  Google Scholar 

  9. Kruppa, A. T. et al. Shell corrections of superheavy nuclei in self-consistent calculations. Phys. Rev. C 61, 034313 (2000)

    Article  ADS  Google Scholar 

  10. Bender, M., Nazarewicz, W. & Reinhard, P.-G. Shell stabilization of super-and hyperheavy nuclei without magic gaps. Phys. Lett. B 515, 42–48 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Ćwiok, S., Pashkevich, V. V., Dudek, J. & Nazarewicz, W. Fission barriers of transfermium elements. Nucl. Phys. A 410, 254–270 (1983)

    Article  ADS  Google Scholar 

  12. Möller, P. & Nix, J. R. Stability of heavy and superheavy elements. J. Phys. G 20, 1681–1747 (1994)

    Article  ADS  Google Scholar 

  13. Armbruster, P. On the production of superheavy elements. Acta Phys. Polon. B 34, 1825–1866 (2003)

    ADS  CAS  Google Scholar 

  14. Julin, R. In-beam spectroscopy of heavy actinides. Nucl. Phys. A 685, 221–232 (2001)

    Article  ADS  Google Scholar 

  15. Ren, Z. Shape coexistence in even-even superheavy nuclei. Phys. Rev. C 65, 051304 (2002)

    Article  ADS  Google Scholar 

  16. Bürvenich, T., Bender, M., Maruhn, J. A. & Reinhard, P.-G. Systematics of fission barriers in superheavy elements. Phys. Rev. C 69, 014307 (2004)

    Article  ADS  Google Scholar 

  17. Hoffman, D. C., Ghiorso, A. & Seaborg, G. T. The Transuranium People (World Scientific, River Edge, New Jersey, 2000)

    Book  Google Scholar 

  18. Hofmann, S. & Münzenberg, G. The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Hofmann, S. et al. Properties of heavy nuclei measured at the GSI SHIP. Nucl. Phys. A 734, 93–100 (2004)

    Article  ADS  Google Scholar 

  20. Ginter, T. N. et al. Confirmation of production of element 110 by the 208Pb(64Ni,n) reaction. Phys. Rev. C 67, 064609 (2003); erratum C68, 029901 (2003)

    Article  ADS  Google Scholar 

  21. Morita, K. et al. Status of heavy element research using GARIS at RIKEN. Nucl. Phys. A 734, 101–108 (2004)

    Article  ADS  Google Scholar 

  22. Morita, K. et al. Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113. J. Phys. Soc. Jpn. 73, 2593–2596 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Oganessian, Yu. Ts. et al. Heavy element research at Dubna. Nucl. Phys. 734, 109–123 (2004)

    Article  Google Scholar 

  24. Moody, K. & the Dubna–Livermore Collaboration . Superheavy element isotopes, decay properties. Nucl. Phys. A 734, 188–191 (2004)

    Article  ADS  Google Scholar 

  25. Oganessian, Yu. Ts. et al. Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292-x114 and 245Cm(48Ca,xn)293-x116. Phys. Rev. C 69, 054607 (2004)

    Article  ADS  Google Scholar 

  26. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Perlínska, E., Rohozínski, S. G., Dobaczewski, J. & Nazarewicz, W. Local density approximation for proton-neutron pairing correlations: formalism. Phys. Rev. C 69, 014316 (2004)

    Article  ADS  Google Scholar 

  29. Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W., Pittel, S. & Dean, D. J. Systematic study of deformed nuclei at the drip lines and beyond. Phys. Rev. C 68, 054312 (2003)

    Article  ADS  Google Scholar 

  30. Chabanat, E., Bonche, P., Haensel, P., Meyer, J. & Schaeffer, R. A Skyrme parametrization from subnuclear to neutron star densities. Part II: nuclei far from stabilities. Nucl. Phys. A 635, 231–256 (1998)

    Article  ADS  Google Scholar 

  31. Bonche, P., Flocard, H., Heenen, P.-H., Krieger, S. J. & Weiss, M. S. Self-consistent calculation of triaxial deformations: application to the isotopes of Kr, Sr, Zr, and Mo. Nucl. Phys. A 443, 39–63 (1985)

    Article  ADS  Google Scholar 

  32. Nazarewicz, W. Microscopic origin of nuclear deformations. Nucl. Phys. A 574, 27c–49c (1994)

    Article  ADS  CAS  Google Scholar 

  33. Pashkevich, V. V. The energy of non-axial deformation in heavy nuclei. Nucl. Phys. A 133, 400–404 (1969)

    Article  ADS  CAS  Google Scholar 

  34. Larsson, S. E., Ragnarsson, I. & Nilsson, S. G. Fission barriers and the inclusion of axial asymmetry. Phys. Lett. B 38, 269–273 (1972)

    Article  ADS  CAS  Google Scholar 

  35. Götz, U., Pauli, H. C. & Junker, K. Influence of asymmetric distortions on fission barriers. Phys. Lett. B 39, 436–438 (1972)

    Article  ADS  Google Scholar 

  36. Wood, J. L., Heyde, K., Nazarewicz, W., Huyse, M. & Van Duppen, P. Coexistence in even-mass nuclei. Phys. Rep. C 215, 101–201 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Bender, J. Dobaczewski and M. Stoyer for discussions. This work was supported in part by the US Department of Energy, by the National Nuclear Security Administration under the Stewardship Science Academic Alliances programme, by the Belgian Science Policy Office, by NATO, and by the Polish Committee for Scientific Research (KBN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-H. Heenen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćwiok, S., Heenen, PH. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005). https://doi.org/10.1038/nature03336

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03336

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing