Letter | Published:

Energy input from quasars regulates the growth and activity of black holes and their host galaxies

Naturevolume 433pages604607 (2005) | Download Citation

Subjects

Abstract

In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today1,2,3, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy4,5. This suggests a link between the growth of the black holes and their host galaxies6,7,8,9, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy–galaxy collisions. We find that, in addition to generating a burst of star formation10, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kormendy, J. & Richstone, D. Inward bound—The search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995)

  2. 2

    Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998)

  3. 3

    Ferrarese, L. & Ford, H. C. Supermassive black holes in galactic nuclei: Past, present and future research. Space Sci. Rev.(in the press)

  4. 4

    Ferrarese, L. & Merritt, D. A Fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L1–L4 (2000)

  5. 5

    Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000)

  6. 6

    Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and quasars. Mon. Not. R. Astron. Soc. 311, 576–588 (2000)

  7. 7

    Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003)

  8. 8

    Wyithe, J. S. B. & Loeb, A. Self-regulated growth of supermassive black holes in galaxies as the origin of the optical and X-ray luminosity functions of quasars. Astrophys. J. 595, 614–623 (2003)

  9. 9

    Granato, G. L., De Zotti, G., Silva, L., Bressan, A. & Danese, L. A Physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys. J. 600, 580–594 (2004)

  10. 10

    Mihos, J. C. & Hernquist, L. Gasdynamics and starbursts in major mergers. Astrophys. J. 464, 641–663 (1996)

  11. 11

    Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982)

  12. 12

    Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002)

  13. 13

    Hernquist, L. Tidal triggering of starbursts and nuclear activity in galaxies. Nature 340, 687–691 (1989)

  14. 14

    Barnes, J. & Hernquist, L. Dynamics of interacting galaxies. Annu. Rev. Astron. Astrophys. 30, 705–742 (1992)

  15. 15

    Silk, J. & Rees, M. Quasars and galaxy formation. Astron. Astrophys. 334, L1–L4 (1998)

  16. 16

    Fabian, A. C. The obscured growth of massive black holes. Mon. Not. R. Astron. Soc. 308, L39–L43 (1999)

  17. 17

    King, A. Black holes, galaxy formation, and the MBH-σ relation. Astrophys. J. 596, L27–L29 (2003)

  18. 18

    Chartas, G., Brandt, W. N. & Gallagher, S. C. XMM-Newton reveals the quasar outflow in PG 1115 + 080. Astrophys. J. 595, 85–93 (2003)

  19. 19

    Crenshaw, D. M., Kraemer, S. B. & George, I. M. Mass loss from the nuclei of active galaxies. Annu. Rev. Astron. Astrophys. 41, 117–167 (2003)

  20. 20

    Pounds, K. A. et al. A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211 + 143. Mon. Not. R. Astron. Soc. 345, 705–713 (2003)

  21. 21

    Springel, V., Di Matteo, T. & Hernquist, L. Modeling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc. (submitted); Preprint astro-ph/0411108 at http://xxx.lanl.gov/ (2004).

  22. 22

    Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952)

  23. 23

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

  24. 24

    Springel, V., Di Matteo, T. & Hernquist, L. Black holes in galaxy mergers: The formation of red elliptical galaxies. Astrophys. J. (submitted)

  25. 25

    Springel, V. & Hernquist, L. Formation of a spiral galaxy in a major merger. Astrophys. J. (submitted)

  26. 26

    Hasinger, G., Miyaji, T. & Schmidt, M. Luminosity dependent evolution of soft X-ray selected AGN. Astron. Astrophys (submitted)

  27. 27

    Barger, A. J. et al. The cosmic evolution of hard X-ray selected active galactic nuclei. Astrophys. J. (in the press)

  28. 28

    Greene, J. E. & Ho, L. C. Active galactic nuclei with candidate intermediate-mass black holes. Astrophys. J. (in the press)

  29. 29

    Springel, V. & Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. Mon. Not. R. Astron. Soc. 339, 289–311 (2003)

  30. 30

    Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002)

Download references

Acknowledgements

The computations reported here were performed at the Center for Parallel Astrophysical Computing at the Harvard-Smithsonian Center for Astrophysics and at the Rechenzentrum der Max-Planck-Gesellschaft in Garching.

Author information

Author notes

    • Tiziana Di Matteo

    Present address: Department of Physics, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA

Affiliations

  1. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85740, Garching bei München, Germany

    • Tiziana Di Matteo
    •  & Volker Springel
  2. Astronomy Department, Harvard University, 60 Garden Street, Cambridge, Massachusetts, 02138, USA

    • Lars Hernquist

Authors

  1. Search for Tiziana Di Matteo in:

  2. Search for Volker Springel in:

  3. Search for Lars Hernquist in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to Tiziana Di Matteo.

Supplementary information

  1. Supplementary Methods

    This document provides technical information about the simulation method and details the equations solved for describing the physics of star formation, black hole accretion and feedback processes. Where appropriate, references to relevant literature for the simulation methodology are included. (PDF 44 kb)

  2. Supplementary Movie

    This computer animation visualizes the time evolution of a merger simulation of two spiral galaxies that host supermassive black holes at their centres. Only the gas distribution is shown. Brightness represents gas density, whereas the colour hue indicates gas temperature. (AVI 10827 kb)

  3. Supplementary Figure S1

    Evolution of the gas density of two gas rich (80% gas) spiral galaxies with supermassive black holes. Colour indicates temperature, and brightness the gas density. After the merger and the formation of a large bulge, the remaining gas cools in the central regions and reassembles in a disk component. The black hole mass and the bulge velocity dispersion of this system are consistent with the M BM s relation. (PDF 77 kb)

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature03335

Further reading

  • The properties of broad absorption line outflows based on a large sample of quasars

    • Zhicheng He
    • , Tinggui Wang
    • , Guilin Liu
    • , Huiyuan Wang
    • , Weihao Bian
    • , Kirill Tchernyshyov
    • , Guobin Mou
    • , Youhua Xu
    • , Hongyan Zhou
    • , Richard Green
    •  & Jun Xu

    Nature Astronomy (2019)

  • Accretion in strong field gravity with eXTP

    • Alessandra De Rosa
    • , Phil Uttley
    • , LiJun Gou
    • , Yuan Liu
    • , Cosimo Bambi
    • , Didier Barret
    • , Tomaso Belloni
    • , Emanuele Berti
    • , Stefano Bianchi
    • , Ilaria Caiazzo
    • , Piergiorgio Casella
    • , Marco Feroci
    • , Valeria Ferrari
    • , Leonardo Gualtieri
    • , Jeremy Heyl
    • , Adam Ingram
    • , Vladimir Karas
    • , FangJun Lu
    • , Bin Luo
    • , Giorgio Matt
    • , Sara Motta
    • , Joseph Neilsen
    • , Paolo Pani
    • , Andrea Santangelo
    • , XinWen Shu
    • , JunFeng Wang
    • , Jian-Min Wang
    • , YongQuan Xue
    • , YuPeng Xu
    • , WeiMin Yuan
    • , YeFei Yuan
    • , Shuang-Nan Zhang
    • , Shu Zhang
    • , Ivan Agudo
    • , Lorenzo Amati
    • , Nils Andersson
    • , Cristina Baglio
    • , Pavel Bakala
    • , Altan Baykal
    • , Sudip Bhattacharyya
    • , Ignazio Bombaci
    • , Niccoló Bucciantini
    • , Fiamma Capitanio
    • , Riccardo Ciolfi
    • , Wei K. Cui
    • , Filippo D’Ammando
    • , Thomas Dauser
    • , Melania Del Santo
    • , Barbara De Marco
    • , Tiziana Di Salvo
    • , Chris Done
    • , Michal Dovčiak
    • , Andrew C. Fabian
    • , Maurizio Falanga
    • , Angelo Francesco Gambino
    • , Bruce Gendre
    • , Victoria Grinberg
    • , Alexander Heger
    • , Jeroen Homan
    • , Rosario Iaria
    • , JiaChen Jiang
    • , ChiChuan Jin
    • , Elmar Koerding
    • , Manu Linares
    • , Zhu Liu
    • , Thomas J. Maccarone
    • , Julien Malzac
    • , Antonios Manousakis
    • , Frédéric Marin
    • , Andrea Marinucci
    • , Missagh Mehdipour
    • , Mariano Méndez
    • , Simone Migliari
    • , Cole Miller
    • , Giovanni Miniutti
    • , Emanuele Nardini
    • , Paul T. O’Brien
    • , Julian P. Osborne
    • , Pierre Olivier Petrucci
    • , Andrea Possenti
    • , Alessandro Riggio
    • , Jerome Rodriguez
    • , Andrea Sanna
    • , LiJing Shao
    • , Malgosia Sobolewska
    • , Eva Sramkova
    • , Abigail L. Stevens
    • , Holger Stiele
    • , Giulia Stratta
    • , Zdenek Stuchlik
    • , Jiri Svoboda
    • , Fabrizio Tamburini
    • , Thomas M. Tauris
    • , Francesco Tombesi
    • , Gabriel Torok
    • , Martin Urbanec
    • , Frederic Vincent
    • , QingWen Wu
    • , Feng Yuan
    • , Jean J. M. in’ t Zand
    • , Andrzej A. Zdziarski
    •  & XinLin Zhou

    Science China Physics, Mechanics & Astronomy (2019)

  • Two separate outflows in the dual supermassive black hole system NGC 6240

    • F. Müller-Sánchez
    • , R. Nevin
    • , J. M. Comerford
    • , R. I. Davies
    • , G. C. Privon
    •  & E. Treister

    Nature (2018)

  • Star formation quenching in massive galaxies

    • Allison Man
    •  & Sirio Belli

    Nature Astronomy (2018)

  • A population of luminous accreting black holes with hidden mergers

    • Michael J. Koss
    • , Laura Blecha
    • , Phillip Bernhard
    • , Chao-Ling Hung
    • , Jessica R. Lu
    • , Benny Trakhtenbrot
    • , Ezequiel Treister
    • , Anna Weigel
    • , Lia F. Sartori
    • , Richard Mushotzky
    • , Kevin Schawinski
    • , Claudio Ricci
    • , Sylvain Veilleux
    •  & David B. Sanders

    Nature (2018)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.