Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of an unliganded simian immunodeficiency virus gp120 core

Abstract

Envelope glycoproteins of human and simian immunodeficiency virus (HIV and SIV) undergo a series of conformational changes when they interact with receptor (CD4) and co-receptor on the surface of a potential host cell, leading ultimately to fusion of viral and cellular membranes. Structures of fragments of gp120 and gp41 from the envelope protein are known, in conformations corresponding to their post-attachment and postfusion states, respectively. We report the crystal structure, at 4 Å resolution, of a fully glycosylated SIV gp120 core, in a conformation representing its prefusion state, before interaction with CD4. Parts of the protein have a markedly different organization than they do in the CD4-bound state. Comparison of the unliganded and CD4-bound structures leads to a model for events that accompany receptor engagement of an envelope glycoprotein trimer. The two conformations of gp120 also present distinct antigenic surfaces. We identify the binding site for a compound that inhibits viral entry.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure and sequence of SIV gp120 core.
Figure 2: Comparison of glycosylated, unliganded SIV gp120 core with deglycosylated, liganded HIV-1 HXBc2 gp120 core14.
Figure 3: Conformational changes induced by CD4 binding.
Figure 4: The binding sites (BS) of CD4 and monoclonal antibody (mAb) 17b (ref. 14), and the putative binding site of BMS-378806 (ref. 24), a small-molecule inhibitor of HIV-1 entry.
Figure 5: Surface structure of the glycosylated, unliganded gp120 core.
Figure 6: Proposed models for gp120/gp41 trimers in unliganded and CD4-bound conformations.

References

  1. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998)

    ADS  CAS  Article  Google Scholar 

  2. Allan, J. S. et al. Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228, 1091–1094 (1985)

    ADS  CAS  Article  Google Scholar 

  3. Veronese, F. D. et al. Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science 229, 1402–1405 (1985)

    ADS  CAS  Article  Google Scholar 

  4. Center, R. J. et al. Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface. J. Virol. 76, 7863–7867 (2002)

    CAS  Article  Google Scholar 

  5. Dalgleish, A. G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767 (1984)

    ADS  CAS  Article  Google Scholar 

  6. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996)

    ADS  CAS  Article  Google Scholar 

  7. Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187 (1996)

    ADS  CAS  Article  Google Scholar 

  8. Wu, L. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183 (1996)

    ADS  CAS  Article  Google Scholar 

  9. Sattentau, Q. J. & Moore, J. P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991)

    CAS  Article  Google Scholar 

  10. Sattentau, Q. J., Moore, J. P., Vignaux, F., Traincard, F. & Poignard, P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol. 67, 7383–7393 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rizzuto, C. D. et al. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949–1953 (1998)

    ADS  CAS  Article  Google Scholar 

  12. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997)

    CAS  Article  Google Scholar 

  13. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997)

    ADS  CAS  Article  Google Scholar 

  14. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998)

    ADS  CAS  Article  Google Scholar 

  15. Chan, D. C., Chutkowski, C. T. & Kim, P. S. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc. Natl Acad. Sci. USA 95, 15613–15617 (1998)

    ADS  CAS  Article  Google Scholar 

  16. Rimsky, L. T., Shugars, D. C. & Matthews, T. J. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol. 72, 986–993 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wyatt, R. et al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393, 705–711 (1998)

    ADS  CAS  Article  Google Scholar 

  18. Pollard, S. R., Meier, W., Chow, P., Rosa, J. J. & Wiley, D. C. CD4-binding regions of human immunodeficiency virus envelope glycoprotein gp120 defined by proteolytic digestion. Proc. Natl Acad. Sci. USA 88, 11320–11324 (1991)

    ADS  CAS  Article  Google Scholar 

  19. Wyatt, R. et al. Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions. J. Virol. 67, 4557–4565 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rud, E. W. et al. in Vaccines 92: Modern Approaches to New Vaccines Including Prevention of AIDS (eds Brown, F., Chanock, R. M., Ginsberg, H. S. & Lerner, R. A.) 229–235 (Cold Spring Harbor Laboratory, New York, 1992)

    Google Scholar 

  21. Chen, B., Vogan, E., Gong, H. Y., Wiley, D. C. & Harrison, S. C. Determining the structure of an unliganded and fully-glycosylated SIV gp120 envelope glycoprotein. Structure (Camb.) (in the press)

  22. Kwong, P. D. et al. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274, 4115–4123 (1999)

    CAS  Article  Google Scholar 

  23. Thali, M. et al. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120–CD4 binding. J. Virol. 67, 3978–3988 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, P. F. et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl Acad. Sci. USA 100, 11013–11018 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Moore, J. P. & Sodroski, J. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J. Virol. 70, 1863–1872 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Myszka, D. G. et al. Energetics of the HIV gp120–CD4 binding reaction. Proc. Natl Acad. Sci. USA 97, 9026–9031 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Kwong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002)

    ADS  CAS  Article  Google Scholar 

  28. Burton, D. R. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994)

    ADS  CAS  Article  Google Scholar 

  29. Pantophlet, R. et al. Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J. Virol. 77, 642–658 (2003)

    CAS  Article  Google Scholar 

  30. Etemad-Moghadam, B. et al. Characterization of simian-human immunodeficiency virus envelope glycoprotein epitopes recognized by neutralizing antibodies from infected monkeys. J. Virol. 72, 8437–8445 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zwick, M. B. et al. A novel human antibody against human immunodeficiency virus type 1 gp120 is V1, V2, and V3 loop dependent and helps delimit the epitope of the broadly neutralizing antibody immunoglobulin G1 b12. J. Virol. 77, 6965–6978 (2003)

    CAS  Article  Google Scholar 

  32. Guo, Q. et al. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120–CD4 interactions. J. Virol. 77, 10528–10536 (2003)

    CAS  Article  Google Scholar 

  33. Madani, N. et al. Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155. J. Virol. 78, 3742–3752 (2004)

    CAS  Article  Google Scholar 

  34. Ferrer, M. & Harrison, S. C. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J. Virol. 73, 5795–5802 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, B. et al. A chimeric protein of simian immunodeficiency virus envelope glycoprotein gp140 and Escherichia coli aspartate transcarbamoylase. J. Virol. 78, 4508–4516 (2004)

    CAS  Article  Google Scholar 

  36. Moore, J. P., McKeating, J. A., Weiss, R. A. & Sattentau, Q. J. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142 (1990)

    ADS  CAS  Article  Google Scholar 

  37. Pugach, P. et al. The prolonged culture of human immunodeficiency virus type 1 in primary lymphocytes increases its sensitivity to neutralization by soluble CD4. Virology 321, 8–22 (2004)

    CAS  Article  Google Scholar 

  38. Puffer, B. A., Altamura, L. A., Pierson, T. C. & Doms, R. W. Determinants within gp120 and gp41 contribute to CD4 independence of SIV Envs. Virology 327, 16–25 (2004)

    CAS  Article  Google Scholar 

  39. Kolchinsky, P., Kiprilov, E. & Sodroski, J. Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J. Virol. 75, 2041–2050 (2001)

    CAS  Article  Google Scholar 

  40. Puffer, B. A. et al. CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J. Virol. 76, 2595–2605 (2002)

    CAS  Article  Google Scholar 

  41. Turner, S. et al. Resistance of primary isolates of human immunodeficiency virus type 1 to neutralization by soluble CD4 is not due to lower affinity with the viral envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA 89, 1335–1339 (1992)

    ADS  CAS  Article  Google Scholar 

  42. Kwong, P. D., Wyatt, R., Sattentau, Q. J., Sodroski, J. & Hendrickson, W. A. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J. Virol. 74, 1961–1972 (2000)

    CAS  Article  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  44. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    CAS  Article  Google Scholar 

  45. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–493 (1997)

    CAS  Article  Google Scholar 

  46. Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  47. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    CAS  Article  Google Scholar 

  48. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  49. McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)

    CAS  Article  Google Scholar 

  50. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank staff at CHESS beamline F1 and APS beamline 19ID for assistance, J. Hoxie of University of Pennsylvania, for hybridomas, and members of the Harrison/Wiley laboratory for discussion. The research was supported by a Scholar Award from the American Foundation for AIDS Research (to B.C.), by the NIH Innovation Grant Program for Approaches in HIV Vaccine Research (to S.C.H. and D.C.W.), and by an NIH HIVRAD grant (to Ellis Reinherz). S.C.H. is, and D.C.W. was, an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Harrison.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Analysis by native polyacrylamide gel eletrophoresis of complexes of SIV gp120 core and Fab fragments from a panel of neutralizing monoclonal antibodies. (DOC 87 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, B., Vogan, E., Gong, H. et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433, 834–841 (2005). https://doi.org/10.1038/nature03327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03327

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing