Self-directed self-assembly of nanoparticle/copolymer mixtures

Abstract

The organization of inorganic nanostructures within self-assembled organic or biological templates1,2,3,4,5,6,7,8,9,10,11 is receiving the attention of scientists interested in developing functional hybrid materials. Previous efforts have concentrated on using such scaffolds7,9,12 to spatially arrange nanoscopic elements as a strategy for tailoring the electrical, magnetic or photonic properties8,9,10,11,13,14,15,16 of the material. Recent theoretical arguments16,17,18 have suggested that synergistic interactions between self-organizing particles and a self-assembling matrix material can lead to hierarchically ordered structures. Here we show that mixtures of diblock copolymers and either cadmium selenide- or ferritin-based nanoparticles exhibit cooperative, coupled self-assembly on the nanoscale. In thin films, the copolymers assemble into cylindrical domains, which dictate the spatial distribution of the nanoparticles; segregation of the particles to the interfaces mediates interfacial interactions and orients the copolymer domains normal to the surface, even when one of the blocks is strongly attracted to the substrate. Organization of both the polymeric and particulate entities is thus achieved without the use of external fields10,19, opening a simple and general route for fabrication of nanostructured materials with hierarchical order.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SFM topography and phase images of thin films from pure PS-b-P2VP block copolymer and PS-b-P2VP–CdSe nanoparticle composites.
Figure 2: GISAXS data on the thin film of PS-b-P2VP–CdSe nanoparticle composites.
Figure 3: TEM and SEM images of thin films from pure PS-b-P2VP block copolymer and PS-b-P2VP–CdSe nanoparticle composites.
Figure 4: Optical microscopy and SFM images of thin films from pure P2VP-b-PEO block copolymer and P2VP-b-PEO–ferritin-PEG nanoparticle composites.

References

  1. 1

    Spatz, J. P. et al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16, 407–415 (2000)

    CAS  Article  Google Scholar 

  2. 2

    Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pai, R. A. et al. Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507–510 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Templin, M. et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278, 1795–1798 (1997)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Liang, H. J., Angelini, T. E., Ho, J., Braun, P. V. & Wong, G. C. L. Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-membrane templates. J. Am. Chem. Soc. 125, 11786–11787 (2003)

    CAS  Article  Google Scholar 

  6. 6

    Li, M., Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bockstaller, M. R., Lapetnikov, Y., Margel, S. & Thomas, E. L. Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J. Am. Chem. Soc. 125, 5276–5277 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Shenton, W., Pum, D., Sleytr, U. B. & Mann, S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bockstaller, M., Kolb, R. & Thomas, E. L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001)

    CAS  Article  Google Scholar 

  12. 12

    Black, C. T., Murray, C. B., Sandstrom, R. L. & Sun, S. H. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Sanchez, C. & Lebeau, B. Design and properties of hybrid organic-inorganic nanocomposites for photonics. MRS Bull. 26, 377–387 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. Rev. 28, 1–63 (2000)

    Article  Google Scholar 

  15. 15

    Soo, P. P. et al. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32–37 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Balazs, A. C. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Curr. Opin. Colloid Interf. Sci. 4, 443–448 (2000)

    Article  Google Scholar 

  17. 17

    Lee, J. Y., Shou, Z. & Balazs, A. C. Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Phys. Rev. Lett. 91, 136103 (2003)

    ADS  Article  Google Scholar 

  18. 18

    Lee, J. Y., Shou, Z. & Balazs, A. C. Predicting the morphologies of confined copolymer/nanoparticle mixtures. Macromolecules 36, 7730–7739 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Mansky, P., Liu, Y., Huang, E., Russell, T. P. & Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 275, 1458–1460 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Meiners, J. C., Quintel-Ritzi, A., Mlynek, J., Elbs, H. & Krausch, G. Adsorption of block-copolymer micelles from a selective solvent. Macromolecules 30, 4945–4951 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Li, Z. et al. Self-ordering of diblock copolymers from solution. J. Am. Chem. Soc. 118, 10892–10893 (1996)

    CAS  Article  Google Scholar 

  22. 22

    Liu, Y. et al. Surface-induced ordering in asymmetric block copolymers. Macromolecules 27, 4000–4010 (1994)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Morkved, T. L. & Jaeger, H. M. Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films. Europhys. Lett. 40, 643–648 (1997)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Knoll, A., Magerle, R. & Krausch, G. Phase behavior in thin films of cylinder-forming ABA block copolymers: Experiments. J. Chem. Phys. 120, 1105–1116 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Brandrup, J. & Immergut, E. H. Polymer Handbook 3rd edn, VI/411–VI/434 (John Wiley & Sons, New York, 1998)

    Google Scholar 

  27. 27

    Wong, K. K. W., Whilton, N. T., Colfen, H., Douglas, T. & Mann, S. Hydrophobic proteins: synthesis and characterisation of organic-soluble alkylated ferritins. Chem. Commun., 1621–1622 (1998)

  28. 28

    Raja, K. S. & Wang, Q. Encyclopedia of Nanoscience and Nanotechnology 321–330 (Marcel Dekker, New York, 2004)

    Google Scholar 

  29. 29

    Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Xu, J. Sievert, K. Lavery, K. Schmidt, M. Hund, X. Hu, H. Skaff and J. Hirsch for their assistance with the experiments. This work was supported by the US Department of Energy, the NSF-supported MRSEC at the University of Massachusetts Amherst, the NSF Collaborative Research in Chemistry Program, the NSF Career Award, the Army Research Office through a MURI, the NSF CRC programme, and the MAX KADE Foundation. The Advanced Photon Source is supported by the US Department of Energy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Russell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains Supplementary Methods and Supplementary Figures 1 and 2. (DOC 4243 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, Y., Böker, A., He, J. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005). https://doi.org/10.1038/nature03310

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.