Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-directed self-assembly of nanoparticle/copolymer mixtures

Abstract

The organization of inorganic nanostructures within self-assembled organic or biological templates1,2,3,4,5,6,7,8,9,10,11 is receiving the attention of scientists interested in developing functional hybrid materials. Previous efforts have concentrated on using such scaffolds7,9,12 to spatially arrange nanoscopic elements as a strategy for tailoring the electrical, magnetic or photonic properties8,9,10,11,13,14,15,16 of the material. Recent theoretical arguments16,17,18 have suggested that synergistic interactions between self-organizing particles and a self-assembling matrix material can lead to hierarchically ordered structures. Here we show that mixtures of diblock copolymers and either cadmium selenide- or ferritin-based nanoparticles exhibit cooperative, coupled self-assembly on the nanoscale. In thin films, the copolymers assemble into cylindrical domains, which dictate the spatial distribution of the nanoparticles; segregation of the particles to the interfaces mediates interfacial interactions and orients the copolymer domains normal to the surface, even when one of the blocks is strongly attracted to the substrate. Organization of both the polymeric and particulate entities is thus achieved without the use of external fields10,19, opening a simple and general route for fabrication of nanostructured materials with hierarchical order.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SFM topography and phase images of thin films from pure PS-b-P2VP block copolymer and PS-b-P2VP–CdSe nanoparticle composites.
Figure 2: GISAXS data on the thin film of PS-b-P2VP–CdSe nanoparticle composites.
Figure 3: TEM and SEM images of thin films from pure PS-b-P2VP block copolymer and PS-b-P2VP–CdSe nanoparticle composites.
Figure 4: Optical microscopy and SFM images of thin films from pure P2VP-b-PEO block copolymer and P2VP-b-PEO–ferritin-PEG nanoparticle composites.

References

  1. Spatz, J. P. et al. Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16, 407–415 (2000)

    Article  CAS  Google Scholar 

  2. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Pai, R. A. et al. Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507–510 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Templin, M. et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278, 1795–1798 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Liang, H. J., Angelini, T. E., Ho, J., Braun, P. V. & Wong, G. C. L. Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-membrane templates. J. Am. Chem. Soc. 125, 11786–11787 (2003)

    Article  CAS  Google Scholar 

  6. Li, M., Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Bockstaller, M. R., Lapetnikov, Y., Margel, S. & Thomas, E. L. Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J. Am. Chem. Soc. 125, 5276–5277 (2003)

    Article  CAS  Google Scholar 

  8. Shenton, W., Pum, D., Sleytr, U. B. & Mann, S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Bockstaller, M., Kolb, R. & Thomas, E. L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001)

    Article  CAS  Google Scholar 

  12. Black, C. T., Murray, C. B., Sandstrom, R. L. & Sun, S. H. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Sanchez, C. & Lebeau, B. Design and properties of hybrid organic-inorganic nanocomposites for photonics. MRS Bull. 26, 377–387 (2001)

    Article  CAS  Google Scholar 

  14. Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. Rev. 28, 1–63 (2000)

    Article  Google Scholar 

  15. Soo, P. P. et al. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32–37 (1999)

    Article  CAS  Google Scholar 

  16. Balazs, A. C. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Curr. Opin. Colloid Interf. Sci. 4, 443–448 (2000)

    Article  Google Scholar 

  17. Lee, J. Y., Shou, Z. & Balazs, A. C. Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Phys. Rev. Lett. 91, 136103 (2003)

    Article  ADS  Google Scholar 

  18. Lee, J. Y., Shou, Z. & Balazs, A. C. Predicting the morphologies of confined copolymer/nanoparticle mixtures. Macromolecules 36, 7730–7739 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Mansky, P., Liu, Y., Huang, E., Russell, T. P. & Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 275, 1458–1460 (1997)

    Article  CAS  Google Scholar 

  20. Meiners, J. C., Quintel-Ritzi, A., Mlynek, J., Elbs, H. & Krausch, G. Adsorption of block-copolymer micelles from a selective solvent. Macromolecules 30, 4945–4951 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Li, Z. et al. Self-ordering of diblock copolymers from solution. J. Am. Chem. Soc. 118, 10892–10893 (1996)

    Article  CAS  Google Scholar 

  22. Liu, Y. et al. Surface-induced ordering in asymmetric block copolymers. Macromolecules 27, 4000–4010 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Morkved, T. L. & Jaeger, H. M. Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films. Europhys. Lett. 40, 643–648 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Knoll, A., Magerle, R. & Krausch, G. Phase behavior in thin films of cylinder-forming ABA block copolymers: Experiments. J. Chem. Phys. 120, 1105–1116 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004)

    Article  CAS  Google Scholar 

  26. Brandrup, J. & Immergut, E. H. Polymer Handbook 3rd edn, VI/411–VI/434 (John Wiley & Sons, New York, 1998)

    Google Scholar 

  27. Wong, K. K. W., Whilton, N. T., Colfen, H., Douglas, T. & Mann, S. Hydrophobic proteins: synthesis and characterisation of organic-soluble alkylated ferritins. Chem. Commun., 1621–1622 (1998)

  28. Raja, K. S. & Wang, Q. Encyclopedia of Nanoscience and Nanotechnology 321–330 (Marcel Dekker, New York, 2004)

    Google Scholar 

  29. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  CAS  Google Scholar 

  30. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Xu, J. Sievert, K. Lavery, K. Schmidt, M. Hund, X. Hu, H. Skaff and J. Hirsch for their assistance with the experiments. This work was supported by the US Department of Energy, the NSF-supported MRSEC at the University of Massachusetts Amherst, the NSF Collaborative Research in Chemistry Program, the NSF Career Award, the Army Research Office through a MURI, the NSF CRC programme, and the MAX KADE Foundation. The Advanced Photon Source is supported by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Russell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains Supplementary Methods and Supplementary Figures 1 and 2. (DOC 4243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Böker, A., He, J. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005). https://doi.org/10.1038/nature03310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03310

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing