Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene transfer to plants by diverse species of bacteria

Abstract

Agrobacterium is widely considered to be the only bacterial genus capable of transferring genes to plants. When suitably modified, Agrobacterium has become the most effective vector for gene transfer in plant biotechnology1. However, the complexity of the patent landscape2 has created both real and perceived obstacles to the effective use of this technology for agricultural improvements by many public and private organizations worldwide. Here we show that several species of bacteria outside the Agrobacterium genus can be modified to mediate gene transfer to a number of diverse plants. These plant-associated symbiotic bacteria were made competent for gene transfer by acquisition of both a disarmed Ti plasmid and a suitable binary vector. This alternative to Agrobacterium-mediated technology for crop improvement, in addition to affording a versatile ‘open source’ platform for plant biotechnology, may lead to new uses of natural bacteria–plant interactions to achieve plant transformation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Binary vectors used for plant transformation.
Figure 2: Genotyping of gene transfer-competent bacterial strains.
Figure 3: Gene transfer to plants by diverse species of bacteria.

References

  1. 1

    Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Roa-Rodríguez, C. & Nottenburg, C. Agrobacterium-mediated transformation of plants. CAMBIA technology landscape paperhttp://www.bios.net/Agrobacterium (2003).

  3. 3

    Van Montagu, M. Jeff Schell (1935–2003): steering Agrobacterium-mediated plant gene engineering. Trends Plant Sci. 8, 353–354 (2003)

    CAS  Article  Google Scholar 

  4. 4

    Wood, D. W. et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Goodner, B. et al. Genome sequencing of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323–2328 (2001)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Klein, D. T. & Klein, R. M. Transmittance of tumor-inducing ability to avirulent crown-gall and related bacteria. J. Bacteriol. 66, 220–228 (1953)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Hooykaas, P. J. J., Klapwijk, P. M., Nuti, M. P., Schilperoort, R. A. & Rörsch, A. Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium ex planta . J. Gen. Microbiol. 98, 477–484 (1977)

    Article  Google Scholar 

  8. 8

    van Veen, R. J. M., den Dulk-Ras, H., Bisseling, T., Schilperoort, R. A. & Hooykaas, P. J. J. Crown gall tumor and root nodule formation by the bacterium Phyllobacterium myrsinacearum after the introduction of an Agrobacterium Ti plasmid or a Rhizobium Sym plasmid. Mol. Plant Microbe Interact. 1, 231–234 (1988)

    Article  Google Scholar 

  9. 9

    van Veen, R. J. M., den Dulk-Ras, H., Schilperoort, R. A. & Hooykaas, P. J. J. Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Arch. Microbiol. 153, 85–89 (1989)

    CAS  Article  Google Scholar 

  10. 10

    Goethals, K., Vereecke, D., Jaziri, M., Van Montagu, M. & Holsters, M. Leafy gall formation by Rhodococcus fascians . Annu. Rev. Phytopathol. 39, 27–52 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Lambert, B. et al. Identification and plant interaction of a Phyllobacterium sp., a predominant rhizobacterium of young sugar beet plants. Appl. Environ. Microbiol. 56, 1093–1102 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Young, J.M., Kuykendall, L.D., Martínez-Romero, E., Kerr, A. & Sawada, H. Classification and nomenclature of Agrobacterium and Rhizobium—a reply to Farrand et al. (2003). Int. J. Syst. Evol. Microbiol. 53, 1689–1695 (2003).

  13. 13

    Galibert, F. et al. The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293, 668–672 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Hood, E. E., Gelvin, S. B., Melchers, L. S. & Hoekema, A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208–218 (1993)

    CAS  Article  Google Scholar 

  15. 15

    Pueppke, S. G. & Broughton, W. J. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant Microbe Interact. 12, 293–318 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Jefferson R. A., Harcourt R. L., Kilian A., Wilson, K. J. & Keese, P. K. Microbial β-glucuronidase genes, gene products and uses thereof. US patent 6,391,547 (2003).

  17. 17

    Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16, 735–743 (1998)

    CAS  Article  Google Scholar 

  18. 18

    Watts, R. A. et al. A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc. Natl Acad. Sci. USA 98, 10119–10124 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc. Natl Acad. Sci. USA 99, 14280–14285 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Brown, J. R. Ancient horizontal gene transfer. Nature Rev. Genet. 4, 121–132 (2003)

    CAS  Article  Google Scholar 

  21. 21

    Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2003)

    ADS  Article  Google Scholar 

  22. 22

    Suzuki, K., Yamashita, I. & Tanaka, N. Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. 32, 775–787 (2002)

    CAS  Article  Google Scholar 

  23. 23

    Reimmann, C. & Haas, D. in Bacterial Conjugation (ed. Clewell, D. B.) 137–188 (Plenum, New York, 1993)

    Book  Google Scholar 

  24. 24

    Nair, G. R., Liu, Z. & Binns, A. N. Reexamining the role of the accessory plasmid pATC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol. 133, 989–999 (2003)

    CAS  Article  Google Scholar 

  25. 25

    Dennis, C. Biologists launch ‘open-source movement’. Nature 431, 494 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Stabb, E. V. & Ruby, E. G. RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol. 358, 413–426 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Svab, Z., Hajdukiewicz, P. & Maliga, P. in Methods in Plant Molecular Biology (eds Maliga, P., Klessig, D. F., Cashmore, A. R., Gruissem, W. & Varner, J. E.) 55–77 (Cold Spring Harbor Laboratory Press, New York, 1995)

    Google Scholar 

  28. 28

    Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994)

    CAS  Article  Google Scholar 

  29. 29

    Cottage, A., Yang, A., Maunders, H., de Lacy, R. C. & Ramsay, N. A. Identification of DNA sequences flanking T-DNA insertions by PCR walking. Plant Mol. Biol. Rep. 19, 321–327 (2001)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was carried out within the Molecular Technologies Group of CAMBIA. We thank M. Irwin, J. Ward and H. Kilborn for their assistance with the plant transformation work. We thank P. Oger for sharing unpublished sequences of the pTiBo542 Ti plasmid, R. Wagner for comparisons of insertion sites with unpublished tobacco sequences, and M. Connett-Porceddu, P. Wenz and S. Hughes for discussions on the manuscript. This work was supported by grants from the Rockefeller Foundation, Horticulture Australia and Rural Industries R&D Corporation (RIRDC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard A. Jefferson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table

Table S1 contains information on the primers used for PCR shown in Figure 2. (DOC 44 kb)

Supplementary Methods

This section describes the rice transformation protocol and includes a table (Table S2) detailing the composition of the tissue culture media used. (DOC 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Broothaerts, W., Mitchell, H., Weir, B. et al. Gene transfer to plants by diverse species of bacteria. Nature 433, 629–633 (2005). https://doi.org/10.1038/nature03309

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing