Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria


Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes1,2,3. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate4,5,6. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms7,8, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth7. This estimation has been calculated from numerous microscopic cell counts in sediment cores of the Ocean Drilling Program1,9. Because these counts cannot differentiate between dead and alive cells, the population size of living microorganisms is unknown10,11. Here, using ribosomal RNA as a target for the technique known as catalysed reporter deposition-fluorescence in situ hybridization (CARD-FISH), we provide direct quantification of live cells as defined by the presence of ribosomes. We show that a large fraction of the sub-seafloor prokaryotes is alive, even in very old (16 million yr) and deep (> 400 m) sediments. All detectable living cells belong to the Bacteria and have turnover times of 0.25–22 yr, comparable to surface sediments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3: Depth profiles of AODC and numbers of Bacteria.


  1. 1

    Parkes, R. J., Cragg, B. A. & Wellsbury, P. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J. 8, 11–28 (2000)

    ADS  Article  Google Scholar 

  2. 2

    D'Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, Princeton, 1984)

    Google Scholar 

  4. 4

    Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    ADS  Article  Google Scholar 

  5. 5

    Kennett, J. P., Cannariato, K. G., Hendy, I. L. & Behl, R. J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–133 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Hedges, J. I. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67–93 (1992)

    CAS  Article  Google Scholar 

  9. 9

    Parkes, R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410–413 (1994)

    ADS  Article  Google Scholar 

  10. 10

    Kepner, R. L. Jr & Pratt, J. R. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol. Rev. 58, 603–615 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Morita, R. Y. (ed.) Bacteria in Oligotrophic Environments (Chapman & Hall, New York, 1997)

  12. 12

    Davis, B. D., Luger, S. M. & Tai, P. C. Role of ribosome degradation in the death of starved Escherichia coli cells. J. Bacteriol. 166, 439–445 (1986)

    CAS  Article  Google Scholar 

  13. 13

    D'Hondt, S. L. et al. Controls on Microbial Communities in Deeply Buried Sediments, Eastern Equatorial Pacific and Peru Margin (Ocean Drilling Program,, 2003)

  14. 14

    Klappenbach, J. L., Saxman, P. R., Cole, J. R. & Schmidt, T. M. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29, 181–184 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Fogel, G. B., Collins, C. R., Li, J. & Brunk, C. F. Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb. Ecol. 38, 93–113 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Jørgensen, B. B. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296, 643–645 (1982)

    ADS  Article  Google Scholar 

  17. 17

    Ravenschlag, K., Sahm, K. & Amann, R. Quantitative molecular analysis of the microbial community in marine Arctic sediments. Appl. Environ. Microbiol. 67, 387–395 (2001)

    CAS  Article  Google Scholar 

  18. 18

    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002)

    CAS  Article  Google Scholar 

  19. 19

    Sekar, R. et al. An improved protocol for quantification of freshwater actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69, 2928–2935 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Teira, E., Reinthaler, T., Pernthaler, A., Pernthaler, J. & Herndl, G. J. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by Bacteria and Archaea in the deep ocean. Appl. Environ. Microbiol. 70, 4411–4414 (2004)

    CAS  Article  Google Scholar 

  21. 21

    Webster, G., Newberry, C. J., Fry, J. C. & Weightman, A. J. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J. Microbiol. Methods 55, 155–164 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Takai, K. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000)

    CAS  Article  Google Scholar 

  23. 23

    Nadkarni, M., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad range (universal) probe and primer set. Microbiol. 148, 257–266 (2002)

    CAS  Article  Google Scholar 

  24. 24

    Kallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H. & Jørgensen, B. B. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol. Oceanogr. Methods 2, 171–180 (2004)

    Article  Google Scholar 

  25. 25

    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Loferer-Krössbacher, M., Witzel, K.-P. & Psenner, P. DNA content of aquatic bacteria measured by densitometric image analysis. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 54, 185–198 (1999)

    Google Scholar 

  27. 27

    Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Zubkov, M. V., Fuchs, B. M., Burkill, P. H. & Amann, R. Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl. Environ. Microbiol. 67, 5210–5218 (2001)

    CAS  Article  Google Scholar 

  29. 29

    Heijnen, J. J. & van Dieken, J. P. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol. Bioeng. 39, 833–858 (1992)

    CAS  Article  Google Scholar 

  30. 30

    Bach, W. & Edwards, K. J. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 3871–3887 (2003)

    ADS  CAS  Article  Google Scholar 

Download references


We thank the ODP Leg 201 personnel and shipboard scientists for sampling and discussions, especially F. Inagaki and A. Teske. This research was supported by a grant to A.S., T.G.F. and B.B.J. from the priority program IODP/ODP of the German Research Foundation (DFG).Authors' contributions A.S. and L.N.N. formulated the main ideas as a result of discussions with T.G.F. and B.B.J., and had the main responsibility for writing the Letter. A.S. did CARD-FISH and Q-PCR analysis, the latter together with L.N.N. B.A.C. and R.J.P. provided AODC data, and J.K., T.G.F. and B.B.J. provided sulphate reduction rates.

Author information



Corresponding author

Correspondence to Axel Schippers.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schippers, A., Neretin, L., Kallmeyer, J. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing