Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The state of the Universe

Abstract

The past 20 years have seen dramatic advances in cosmology, mostly driven by observations from new telescopes and detectors. These instruments have allowed astronomers to map out the large-scale structure of the Universe and probe the very early stages of its evolution. We seem to have established the basic parameters describing the behaviour of our expanding Universe, thereby putting cosmology on a firm empirical footing. But the emerging ‘standard’ model leaves many details of galaxy formation still to be worked out, and new ideas are emerging that challenge the theoretical framework on which the structure of the Big Bang is based. There is still a great deal left to explore in cosmology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The Hubble diagram (magnitude–redshift diagram) for type Ia supernovae from the High-z team29.
Figure 2: The angular power spectrum of fluctuations in the CMB temperature across the sky as measured by WMAP (TT cross power spectrum), as well as the temperature-polarization cross-correlation (TE cross power spectrum).
Figure 3: Simulations of large-scale structure formation made by the Virgo consortium63.
Figure 4: The distribution of galaxies in the 2dF Galaxy Redshift Survey.

References

  1. 1

    Einstein, A. The gravitational field equations [in German]. Sitz. Ber. Preuss. Akad. Wiss. 844–847 (1915).

  2. 2

    Friedmann, A. On the curvature of space [in German]. Z. Phys. 10, 377–386 (1922).

    ADS  MATH  Article  Google Scholar 

  3. 3

    Lemaitre, G. A homogenous universe of constant mass and increasing radius accounting for the radial velocity of the extragalactic nebulae. Ann. Soc. Sci. Brux. A 47, 49–59 (1929); [in English] Mon. Not. R. Astron. Soc. 91, 483–490 (1931).

    Google Scholar 

  4. 4

    Hubble, E. A relation between distance and radial velocity among extragalactic nebulae. Proc. Natl Acad. Sci. 15, 168–173 (1929).

    ADS  CAS  PubMed  MATH  Article  Google Scholar 

  5. 5

    Penzias, A. A. & Wilson, R. W. Measurement of excess antenna temperature at 4080 MHz. Astrophys. J. 142, 419–421 (1965).

    ADS  Article  Google Scholar 

  6. 6

    Dicke, R. H., Peebles, P. J. E., Roll, P. G. & Wilkinson, D. T. Cosmic blackbody radiation. Astrophys. J. 142, 414–419 (1965).

    ADS  Article  Google Scholar 

  7. 7

    Mather, J. C. et al. Measurement of the cosmic background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994).

    ADS  Article  Google Scholar 

  8. 8

    Gamow, G. Expanding universe and the origin of elements. Phys. Rev. 70, 572–573 (1946).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Alpher, R. A. & Herman, R. C. Evolution of the universe. Phys. Rev. 73, 803–804 (1948).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Guth, A. H. Inflationary Universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    ADS  CAS  MATH  Article  Google Scholar 

  11. 11

    Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).

    ADS  Article  Google Scholar 

  12. 12

    Linde, A. D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982).

    ADS  Article  Google Scholar 

  13. 13

    Linde, A. D. Chaotic inflation. Phys. Lett. B 129, 177–181 (1983).

    ADS  Article  Google Scholar 

  14. 14

    Kaluza, T. On the unification problem of physics [in German]. Sitz. Ber. Preuss. Akad. Wiss. 966–972 (1921).

  15. 15

    Klein, O. Quantum theory and five-dimensional relativity theory [in German]. Z. Phys. 37, 895–906 (1926).

    ADS  Article  Google Scholar 

  16. 16

    Khoury, J., Ovrut, B. A., Steinhardt, P. J. & Turok, N. Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 13522 (2001).

    ADS  MathSciNet  Article  CAS  Google Scholar 

  17. 17

    Khoury, J., Ovrut, B. A., Steinhardt, P. J. & Turok, N. From big crunch to big bang. Phys. Rev. D 65, 086007 (2002).

    ADS  Article  CAS  Google Scholar 

  18. 18

    Randall, L. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

  19. 19

    Jeans, J. H. The stability of spiral nebulae. Phil. Trans. R. Soc. Lond. A 199, 1–53 (1902).

    ADS  Article  Google Scholar 

  20. 20

    Lifshitz, E. M. On the gravitational instability of the expanding universe. Sov. Phys. JETP 10, 116–122 (1946).

    MATH  Google Scholar 

  21. 21

    Linde, A. D. Scalar field fluctuations in the expanding universe and the new inflationary universe scenario. Phys. Lett. B 116, 335–339 (1982).

    ADS  Article  Google Scholar 

  22. 22

    Guth, A. H. & Pi, S. -Y. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110–1113 (1982).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Starobinsky, A. A. Spectrum of relict gravitational radiation and the early state of the universe. Sov. Phys. JETP Lett. 30, 682–685 (1979).

    ADS  Google Scholar 

  24. 24

    Coles, P. & Ellis, G. F. R. The case for an open universe. Nature 370, 609–615 (1994).

    ADS  Article  Google Scholar 

  25. 25

    Efstathiou, G., Sutherland, W. J. & Maddox, S. J. The cosmological constant and cold dark matter. Nature 348, 705–706 (1990).

    ADS  Article  Google Scholar 

  26. 26

    Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    ADS  MATH  Article  Google Scholar 

  27. 27

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Article  Google Scholar 

  28. 28

    Riess, A. G. et al. The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 560, 49–71 (2001).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Tonry, J. L. et al. Cosmological results from high-z supernovae. Astrophys. J. 594, 1–24 (2003).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Freedman, W. L. et al. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47–72 (2001).

    ADS  Article  Google Scholar 

  31. 31

    Carretta, E., Gratton, R. G., Clementini, G. & Flavio, F. P. Distances, ages and epoch of formation of globular clusters. Astrophys. J. 533, 215–235 (2000).

    ADS  Article  Google Scholar 

  32. 32

    Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

    MATH  Google Scholar 

  33. 33

    Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 6, 1–22 (1989).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. 34

    Wang, L., Caldwell, R. R., Ostriker, J. P. & Steinhard, P. J. Cosmic concordance and quintessence. Astrophys. J. 530, 17–35 (2000).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Sahni, V. The cosmological constant problem and quintessence. Class. Quant. Grav. 19, 3435–3448 (2002).

    ADS  MATH  Article  Google Scholar 

  36. 36

    Peebles, P. J. E. & Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003).

    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

  37. 37

    Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations. Astrophys. J. Suppl. 148, 1–27 (2003).

    ADS  Article  Google Scholar 

  38. 38

    Hinshaw, G. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The angular power spectrum. Astrophys. J. Suppl. 148, 135–159 (2003).

    ADS  Article  Google Scholar 

  39. 39

    Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. 396, L1–L4 (1992).

    ADS  Article  Google Scholar 

  40. 40

    de Bernardis, P. et al. A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 420, 763–765 (2000).

    Google Scholar 

  41. 41

    Lange, A. E. et al. Cosmological parameters from the first results of BOOMERANG. Phys. Rev. D. 63, 042001 (2001).

    ADS  Article  CAS  Google Scholar 

  42. 42

    Hanany, S. et al. MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales 10 arc minutes to 5 degrees. Astrophys. J. 545, L5–L9 (2000).

    ADS  Article  Google Scholar 

  43. 43

    Balbi, A. et al. Constraints on cosmological parameters from MAXIMA-1 Astrophys. J. 545, L1–L4 (2000).

    ADS  Article  Google Scholar 

  44. 44

    Lee, A. et al. A high spatial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data. Astrophys. J. 561, L1–L4 (2001).

    ADS  Article  Google Scholar 

  45. 45

    Jaffe, A. H. Cosmology from MAXIMA-1, BOOMERANG, and COBE-DMR cosmic microwave background observations. Phys. Rev. Lett. 86, 3475–3479 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  46. 46

    Padin, S. et al. First intrinsic anisotropy measurements with the cosmic background imager. Astrophys. J 549, L1–L5 (2001).

    ADS  Article  Google Scholar 

  47. 47

    Halverson, N. W. et al. Degree Angular Scale Interferometer first results: A measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568, 38–45 (2002).

    ADS  Article  Google Scholar 

  48. 48

    Kovac, J. M. et al. Detection of polarization in the cosmic microwave background using DASI. Nature 468, 46–51 (2002).

    Google Scholar 

  49. 49

    Efstathiou, G. Evidence for a non-zero and a low matter density from a combined analysis of the 2dF Galaxy Redshift Survey and cosmic microwave background anisotropies. Mon. Not. R. Astron. Soc. 330, L29–L35 (2002).

    ADS  Article  Google Scholar 

  50. 50

    Lahav, O. et al. The 2dF Galaxy Redshift Survey: The amplitudes of fluctuations in the 2dFGRS and the CMB, and the implications for galaxy biasing. Mon. Not. R. Astron. Soc. 333, 961–968 (2002).

    ADS  Article  Google Scholar 

  51. 51

    Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003).

    ADS  Article  Google Scholar 

  52. 52

    Bridle, S. L., Lahav, O., Ostriker, J. P. & Steinhardt, P. J. Precision cosmology? Not just yet. Science 299, 1532–1536 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  53. 53

    Eriksen, H. K., Hansen, F. K., Banday, A. J., Gorski, K. M. & Lilje, P. B. Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605, 14–20 (2004).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Vielva, P., Martinez-Gonzalez, E., Barreiro, R. B., Sanz, J. L. & Cayon, L. Detection of non-gaussianity in the Wilkinson Microwave Anisotropy Probe first-year data using spherical wavelets. Astrophys. J. 609, 22–34 (2004).

    ADS  CAS  Article  Google Scholar 

  55. 55

    Coles, P., Dineen, P. J., Earl, J. & Wright, D. Phase correlations in cosmic microwave background temperature maps. Mon. Not. R. Astron. Soc. 350, 989–1004 (2004).

    ADS  CAS  Article  Google Scholar 

  56. 56

    De Oliveira-Costa, A. et al. The quest for microwave foreground X. Astrophys. J. 606, L89–L92 (2004).

    ADS  Article  Google Scholar 

  57. 57

    Luminet, J. P., Weeks, J. R., Riazuelo, A., Lehoucq, R. & Uzan, J. -P. Dodecahedral space topology as an explanation for the weak wide-angle temperature correlations in the cosmic microwave background. Nature 425, 593–595 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  58. 58

    Cornish, N. J., Spergel, D. N., Starkman, G. D. & Komatsu, E. Constraining the topology of the universe. Phys. Rev. Lett. 92, 201302 (2004).

    ADS  MathSciNet  PubMed  MATH  Article  CAS  Google Scholar 

  59. 59

    Kogut, A. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature-polarization correlation. Astrophys. J. Suppl. 148, 161–173 (2003).

    ADS  Article  Google Scholar 

  60. 60

    Kosowksy, A. Introduction to microwave background polarization. New Astron. Rev. 48, 157–168 (1999).

    ADS  Google Scholar 

  61. 61

    Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984).

    ADS  CAS  Article  Google Scholar 

  62. 62

    Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    ADS  CAS  Article  Google Scholar 

  63. 63

    Jenkins, A. et al. Evolution of structure in CDM universes. Astrophys. J. 499, 20–40 (1998).

    ADS  Article  Google Scholar 

  64. 64

    Coles, P. Galaxy formation with a local bias. Mon. Not. R. Astron. Soc. 262, 1065–1075 (1993).

    ADS  Article  Google Scholar 

  65. 65

    Colless, M. et al. The 2dF Galaxy Redshift Survey: Spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039–1063 (2001).

    ADS  Article  Google Scholar 

  66. 66

    Percival, W. J. et al. The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the universe. Mon. Not. R. Astron. Soc. 327, 1297–1306 (2001).

    ADS  Article  Google Scholar 

  67. 67

    Peacock, J. A. et al. A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey. Nature 410, 169–163 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  68. 68

    Norberg, P. D. et al. The 2dF Galaxy Redshift Survey: Luminosity dependence of galaxy clustering. Mon. Not. R. Astron. Soc. 328, 64–70 (2001).

    ADS  Article  Google Scholar 

  69. 69

    Abazajian, K. et al. The first data release of the Sloan Digital Sky Survey. Astron. J. 126, 2081–2086 (2003).

    ADS  Article  Google Scholar 

  70. 70

    Zehavi, I. et al. Galaxy clustering in early Sloan Digital Sky Survey redshift data. Astrophys. J. 571, 172–190 (2002).

    ADS  Article  Google Scholar 

  71. 71

    Mellier, Y. Probing the Universe with weak lensing. Annu. Rev. Astron. Astrophys. 37, 127–189 (1999).

    ADS  Article  Google Scholar 

  72. 72

    Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    ADS  CAS  Article  Google Scholar 

  73. 73

    Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local universe. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    Article  Google Scholar 

  74. 74

    Baugh, C. M., Cole, S., Frenk, C. S. & Lacey, C. G. The epoch of galaxy formation. Astrophys. J. 498, 504–521 (1998).

    ADS  Article  Google Scholar 

  75. 75

    Cole, S., Lacey, C. G., Baugh, C. M. & Frenk, C. S. Hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 319, 168–204 (2000).

    ADS  CAS  Article  Google Scholar 

  76. 76

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    ADS  Article  Google Scholar 

  77. 77

    Moore, B., Quinn, T., Governato, F., Stadel, J. & Lake, G. Cold collapse and the core catastrophe. Mon. Not. R. Astron. Soc. 310, 1147–1152 (1999).

    ADS  CAS  Article  Google Scholar 

  78. 78

    Ghigna, S. et al. Density profiles and substructure of dark matter halos: Converging results and ultra-high numerical resolution. Astrophys. J. 544, 616–628 (2000).

    ADS  CAS  Article  Google Scholar 

  79. 79

    Jing, Y. -P. & Suto, Y. The density profiles of the dark matter halo are not universal. Astrophys. J. 529, L69–L72 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  80. 80

    Klypin, A., Kravtsov, A. V., Bullock, J. S. & Primack, J. R. Resolving the structure of cold dark matter halos. Astrophys. J. 554, 903–915 (2001).

    ADS  Article  Google Scholar 

  81. 81

    Fukushige, T., Kawai, A. & Makino, J. Structure of dark matter halos from hierarchical clustering III. Shallowing of the inner cusp. Astrophys. J. 606, 625–634 (2004).

    ADS  CAS  Article  Google Scholar 

  82. 82

    Navarro, J. F. et al. The inner structure of CDM haloes — III. Universality and asymptotic slopes. Mon. Not. R. Astron. Soc. 349, 1039–1051 (2004).

    ADS  CAS  Article  Google Scholar 

  83. 83

    van den Bosch, F. C., Robertson, B. E., Dalcanton, J. J. & de Blok, W. J. G. Constraints on the structure of dark matter halos from the rotation curves of low surface brightness galaxies. Astron. J. 119, 1579–1591 (2000).

    ADS  Article  Google Scholar 

  84. 84

    de Blok, W. J. G., McGaugh, S. S., Bosma, A. & Rubin, V. C. Mass density profiles of low surface brightness galaxies. Astron. J. 122, 2396–2347 (2001).

    ADS  CAS  Article  Google Scholar 

  85. 85

    van den Bosch, F. C. & Swaters, R. A. Dwarf galaxy rotation curves and the core problem of dark matter haloes. Mon. Not. R. Astron. Soc. 325, 1017–1038 (2001).

    ADS  Article  Google Scholar 

  86. 86

    Romanowsky, A. et al. A dearth of dark matter in ordinary elliptical galaxies. Science 301, 1696–1698 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  87. 87

    Benson, A. J. et al. What shapes the luminosity function of galaxies? Astrophys. J. 599, 38–49 (2003).

    ADS  Article  Google Scholar 

  88. 88

    Becker, R. H. et al. Evidence for reionization at z›6: Detection of a Gunn-Peterson trough in a z=6.28 quasar. Astron. J. 122, 2850–2857 (2001).

    ADS  Article  Google Scholar 

  89. 89

    Fan, X. et al. Evolution of the ionizing background and the epoch of reionization from the spectra of z≈6 quasars. Astron. J. 123, 1247–1257 (2002).

    ADS  Article  Google Scholar 

  90. 90

    Gnedin, N. Y. Cosmological reionization by stellar sources. Astrophys. J. 535, 530–554 (2000).

    ADS  CAS  Article  Google Scholar 

  91. 91

    Barkana, R. & Loeb, A. In the beginning: The first sources of light and the reionization of the universe. Phys. Rep. 349, 125–238 (2001).

    ADS  CAS  Article  Google Scholar 

  92. 92

    Abel, T., Bryan, G. & Norman, M. L. The formation of the first star in the universe. Science 295, 93–98 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  93. 93

    Bromm, V. & Larson, R. B. The first stars. Annu. Rev. Astron. Astrophys. 42, 79–118 (2004).

    ADS  CAS  Article  Google Scholar 

  94. 94

    Madau, P., Pozzetti, L. & Dickinson, M. The star formation histories of field galaxies. Astrophys. J. 498, 106–116 (1998).

    ADS  Article  Google Scholar 

  95. 95

    Blain, A. W., Smail, I., Ivison, R. J. & Kneib, J. -P. The history of star formation in dusty galaxies. Mon. Not. R. Astron. Soc. 302, 632–648 (1999).

    ADS  Article  Google Scholar 

  96. 96

    Coles, P. The future of extragalactic observations. Class. Quant. Grav. 19, 3539–3549 (2002).

    ADS  CAS  MATH  Article  Google Scholar 

  97. 97

    Einstein, A. Cosmological considerations of the general theory of relativity [in German]. Sitz. Ber. Preuss. Akad. Wiss. 142–152 (1917); English translation in The Principle of Relativity (eds Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H.) 177–188 (Methuen, London, 1950).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coles, P. The state of the Universe. Nature 433, 248–256 (2005). https://doi.org/10.1038/nature03282

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing