Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In search of symmetry lost

Abstract

Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Visual metaphors for gauge symmetry and superconductivity.
Figure 2: Gauge symmetry and the Higgs condensate.
Figure 3: Constraints on the mass of the Higgs boson from experimental data.
Figure 4: Higgs couplings.
Figure 5: Unification of the forces.

References

  1. 1

    Glashow, S. Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).

    Article  Google Scholar 

  2. 2

    Weinberg, S. A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).

    ADS  Article  Google Scholar 

  3. 3

    Salam, A. in Elementary Particle Physics, Nobel Symp. (ed. Svarthom, N.) No. 8, 367–377 (Almqvist & Wiksell, Stokholm, 1968).

    Google Scholar 

  4. 4

    't Hooft, G. & Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  5. 5

    Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Higgs, P. Broken symmetries and the masses of gauge bosons Phys. Rev. Lett. 13, 508–509 (1964).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. 7

    Wess, J. & Zumino, B. A lagrangian model invariant under supergauge transformations. Phys. Lett. B 49, 52–54 (1974).

    ADS  Article  Google Scholar 

  8. 8

    Ferrara, S. (ed.) Supersymmetry (North Holland/World Scientific, Singapore, 1987).

  9. 9

    Weinberg, S. The Quantum Theory of Fields 1: Foundations (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  10. 10

    Wilczek, F. Quantum field theory. Rev. Mod. Phys. 71, S85–S95 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Weyl, H. Z. Elektron and gravitation I. Z. Phys. 56, 330–352 (1929).

    ADS  Article  Google Scholar 

  12. 12

    London, F. Quantenmechanische deutung der theorie von Weyl. Z. Phys. 42, 375–389 (1927).

    ADS  Article  Google Scholar 

  13. 13

    Yang, C. N. & Mills, R. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. 14

    ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration & The LEP Working Group for Higgs Boson. Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003).

  15. 15

    LEP Electroweak Working Group [online] 〈http://lepewwg.web.cern.ch/LEPEWWG〉 (2004).

  16. 16

    Einhorn, M. (ed) The Standard Model Higgs Boson (North Holland, Amsterdam, 1991).

  17. 17

    Gunion, J., Haber, H., Kane, G., & Dawson, S. The Higgs Hunter's Guide (Addison Wesley, New York, 1990).

    Google Scholar 

  18. 18

    Gross, D. & Wilczek, F. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Politzer, H. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Riess, A. et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Article  Google Scholar 

  21. 21

    Permutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    ADS  Article  Google Scholar 

  22. 22

    Spergel, D. et al., Determination of cosmological parameters. Astrophys. J. 148 (suppl.), 175–194 (2003).

    Article  Google Scholar 

  23. 23

    London, F. Superfluids 1: Macroscopic Theory of Superconductivity (Wiley, New York, 1950).

    MATH  Google Scholar 

  24. 24

    Bardeen, J., Cooper, L. & Schrieffer, R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  25. 25

    Weinberg, S. Quantum Theory of Fields, Vol. 3: Supersymmetry (Cambridge Univ. Press, Cambridge 2000).

    Book  Google Scholar 

  26. 26

    Lee, T. D. & Yang, C. N. Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lederman, L. & Teresi, D. The God Particle (Bantam, New York, 1993).

    Book  Google Scholar 

  28. 28

    Wilczek, F. The origin of mass. Ann. Phys. (MIT) 16, 24–35 (2003).

    Google Scholar 

  29. 29

    Einstein, A. Does the inertia of a body depend upon its energy content? [in German] Ann. Phys. 18, 639–641 (1905).

    Article  Google Scholar 

  30. 30

    Kuti, J., Lin, L. & Shen, Y. Upper bound on the Higgs-boson mass in the standard model Phys. Rev. Lett. 61, 678–681 (1988).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Wilczek, F. Decays of heavy vector mesons into Higgs particles. Phys. Rev. Lett. 39, 1304–1306 (1977).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Bjorken, J. in Proc. SLAC Summer School (SLAC publication 198, 1976).

    Google Scholar 

  33. 33

    Georgi, H., Glashow, S., Machacek, M. & Nanopoulos, D. Higgs bosons from two-gluon annihilation in proton–proton collisions. Phys. Rev. Lett. 40, 692–694 (1978).

    ADS  CAS  Article  Google Scholar 

  34. 34

    CMS collaboration. The compact muon solenoid [online] 〈http://www.lip.pt/~outreach/docs/cms2〉 (2004).

  35. 35

    Pati, & Salam, A. Unified lepton-hadron symmetry and a gauge theory of the basic interactions. Phys. Rev. D 8, 1240–1251 (1973).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Georgi, H., Quinn, H. & Weinberg, S. Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett. 33, 451–454 (1974).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Dimopoulos, S., Raby, S. & Wilczek, F. Supersymmetry and the scale of unification. Phys. Rev. D 24, 1681–1683 (1981).

    ADS  CAS  Article  Google Scholar 

  38. 38

    Dimopoulos, S. & Georgi, H. Softly broken supersymmetry and SU(5). Nucl. Phys. 193, 150–162 (1981).

    ADS  Article  Google Scholar 

  39. 39

    Amaldi, U., de Boer, W. & Fürstenau, H. Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260, 447–455 (1991).

    ADS  CAS  Article  Google Scholar 

  40. 40

    Ellis, J., Kelly, S. & Nanopoulos, D. Precision LEP data, supersymmetric GUTs and string unification. Phys. Lett. B 249, 441–448 (1990).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Gildener, E. & Weinberg, S. Symmetry breaking and scalar bosons. Phys. Rev. D 13, 3333–3341 (1976).

    ADS  CAS  Article  Google Scholar 

  42. 42

    Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513–554 (1981).

    ADS  Article  Google Scholar 

  43. 43

    Gell-Mann, M., Ramond, P. & Slansky, R. in Supergravity: Proceedings of the Supergravity Workshop at Stony Brook, September 27–29, 1979 (eds van Nieuwenhuizen, P. & Freedman, D.) 315–321 (North Holland, Amsterdam, 1979).

    Google Scholar 

  44. 44

    Yanagida, T. in Workshop on Unified Theory and Baryon Number in the Universe (eds Sawada, O. & Sugamoto, A.) 95–98 (KEK, Tsukuba, 1979).

    Google Scholar 

  45. 45

    Wilczek, F. Scaling mount Planck 3: is that all there is? Phys. Today 55N8, 10–11 (2002).

    Article  Google Scholar 

  46. 46

    Kirzhnits, D. & Linde, A. Symmetry behaviour in guage theories. Ann. Phys. 101, 195–238 (1976).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Guth, A. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    ADS  CAS  Article  Google Scholar 

  48. 48

    A precision measurement of the mass of the top quark. Nature 429, 638–642 (2004).

  49. 49

    Georgi, H. & Glashow, S. Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438–441 (1974).

    ADS  CAS  Article  Google Scholar 

  50. 50

    Georgi, H. in Particles and Fields 1974 (ed. Carlson, C.) 575–584 (AIP, New York, 1975).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilczek, F. In search of symmetry lost. Nature 433, 239–247 (2005). https://doi.org/10.1038/nature03281

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing