Abstract
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary — that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



References
- 1
Pais, A. Subtle is the Lord: the Science and the Life of Albert Einstein Ch. 20. 389–401 (Oxford Univ. Press, Oxford, 1982).
- 2
Domb, C. The Critical Point: a Historical Introduction to the Modern Theory of Critical Phenomena (Taylor & Francis, London, 1996).
- 3
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, New York, 1999)
- 4
Hertz, J. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).
- 5
Laughlin, R. B., Lonzarich, G. G., Monthoux, P. & Pines, D. The quantum criticality conundrum. Adv. Phys. 50, 361–365. (2001).
- 6
von Lohneysen, H. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).
- 7
Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).
- 8
Julian, S. R. et al. The normal states of magnetic d and f transition metals. J. Phys. Condens. Matt. 8, 9675–9688 (1996).
- 9
Grigera, S. A. et al. Magnetic field tuned quantum criticality in the metallic ruthenate Sr3Ru2O7 . Science 294, 329–332 (2001).
- 10
Doiron-Leyraud, N. et al. Fermi liquid breakdown in the paramagnetic phase of a pure metal. Nature 425, 595–599 (2003).
- 11
Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).
- 12
Millis, A. J. Effect of a non-zero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).
- 13
Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).
- 14
Belitz, D., Kirkpatrick, T. R. & Rollühler, J. Breakdown of the perturbative renormalization group at certain quantum critical points. Phys. Rev. Lett. 93, 155701/1–4 (2004).
- 15
Si, Q., Rabello, S., Ingersent K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).
- 16
Coleman, P., Pépin, C., Qimiao Si & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matt. 13, R723–R738 (2001).
- 17
Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).
- 18
Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).
- 19
Petrovic, C. et al. A new heavy-fermion superconductor CeIrIn/sub 5/: a relative of the cuprates? Europhys. Lett. 53, 354–359 (2001).
- 20
Grigera, S. A. et al. Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306, 1154–1157 (2004).
- 21
Kim, K. H., Harrison, N., Jaime, M., Boebinger, G. S. & Mydosh, J. A. Magnetic-field-induced quantum critical point and competing order parameters in URu2Si2 . Phys. Rev. Lett. 91, 256401/1–4 (2003).
- 22
Amitsuka, H. et al. Hidden order and weak antiferromagnetism in URu2Si2 . Physica B 312–3, 390–396 (2002).
- 23
Chandra, P. et al. Hidden orbital order in URu2Si2 . Nature 417, 831–834 (2002).
- 24
Chapline, G. & Laughlin, R. B. in Artificial Black Holes (eds Novello, M. et al.) 179–198 (World Scientific, Singapore, 2002).
- 25
Custers, J. et al. The break up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).
Acknowledgements
We gratefully acknowledge discussions with P. Chandra, Z. Fisk, A. P. Mackenzie and D. Pines. P.C. is supported by the National Science Foundation. A.J.S. is supported by the Royal Society, the Leverhulme Trust and the EPSRC.
Author information
Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Coleman, P., Schofield, A. Quantum criticality. Nature 433, 226–229 (2005). https://doi.org/10.1038/nature03279
Published:
Issue Date:
Further reading
-
Is Solid Copper Oxalate a Spin Chain or a Mixture of Entangled Spin Pairs?
The Journal of Physical Chemistry C (2021)
-
InfoCGAN classification of 2D square Ising configurations
Machine Learning: Science and Technology (2021)
-
Physical properties and magnetic phase diagram of (Cr90Ir10)100-V alloy system
Journal of Alloys and Compounds (2021)
-
Lattice vibration as a knob on exotic quantum criticality
Physical Review B (2021)
-
Quantum phases driven by strong correlations
Nature Reviews Physics (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.