Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex

Abstract

Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Functional maps of selective responses in rat visual cortex with single-cell resolution.
Figure 2: Smoothly changing direction map in cat visual cortex.
Figure 3: Direction discontinuity in cat visual cortex.
Figure 4: Sharpness of direction discontinuity at multiple depths.
Figure 5: Correspondence of direction tuning obtained by calcium imaging and single-unit electrophysiology in cat visual cortex.
Figure 6: Three regimes of functional organization.

References

  1. 1

    Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957)

    CAS  Article  Google Scholar 

  2. 2

    Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962)

    CAS  Article  Google Scholar 

  3. 3

    Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R. & Manker, A. Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308, 848–850 (1984)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Blasdel, G. G. & Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Shmuel, A. & Grinvald, A. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 16, 6945–6964 (1996)

    CAS  Article  Google Scholar 

  8. 8

    Weliky, M., Bosking, W. H. & Fitzpatrick, D. A systematic map of direction preference in primary visual cortex. Nature 379, 725–728 (1996)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Maldonado, P. E., Godecke, I., Gray, C. M. & Bonhoeffer, T. Orientation selectivity in pinwheel centers in cat striate cortex. Science 276, 1551–1555 (1997)

    CAS  Article  Google Scholar 

  10. 10

    Parnavelas, J. G., Burne, R. A. & Lin, C. S. Receptive field properties of neurons in the visual cortex of the rat. Neurosci. Lett. 27, 291–296 (1981)

    CAS  Article  Google Scholar 

  11. 11

    Girman, S. V., Sauve, Y. & Lund, R. D. Receptive field properties of single neurons in rat primary visual cortex. J. Neurophysiol. 82, 301–311 (1999)

    CAS  Article  Google Scholar 

  12. 12

    Tsien, R. Y. Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci. 11, 419–424 (1988)

    CAS  Article  Google Scholar 

  13. 13

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo . J. Neurosci. 23, 8558–8567 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Yuste, R. & Katz, L. C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991)

    CAS  Article  Google Scholar 

  17. 17

    Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Wiesenfeld, Z. & Kornel, E. E. Receptive fields of single cells in the visual cortex of the hooded rat. Brain Res. 94, 401–412 (1975)

    CAS  Article  Google Scholar 

  20. 20

    Mao, B. Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C. & Yuste, R. Dynamics of spontaneous activity in neocortical slices. Neuron 32, 883–898 (2001)

    CAS  Article  Google Scholar 

  21. 21

    Ts'o, D. Y., Frostig, R. D., Lieke, E. E. & Grinvald, A. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249, 417–420 (1990)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Payne, B. R., Berman, N. & Murphy, E. H. Organization of direction preferences in cat visual cortex. Brain Res. 211, 445–450 (1981)

    CAS  Article  Google Scholar 

  23. 23

    Swindale, N. V., Matsubara, J. A. & Cynader, M. S. Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci. 7, 1414–1427 (1987)

    CAS  Article  Google Scholar 

  24. 24

    Ohki, K., Matsuda, Y., Ajima, A., Kim, D. S. & Tanaka, S. Arrangement of orientation pinwheel centers around area 17/18 transition zone in cat visual cortex. Cereb. Cortex 10, 593–601 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Gilbert, C. D. & Wiesel, T. N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Martin, K. A. & Whitteridge, D. The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. J. Physiol. (Lond.) 356, 291–302 (1984)

    CAS  Article  Google Scholar 

  27. 27

    Hirsch, J. A. Synaptic physiology and receptive field structure in the early visual pathway of the cat. Cereb. Cortex 13, 63–69 (2003)

    Article  Google Scholar 

  28. 28

    Adams, D. L. & Horton, J. C. Capricious expression of cortical columns in the primate brain. Nature Neurosci. 6, 113–114 (2003)

    CAS  Article  Google Scholar 

  29. 29

    Rose, D. & Blakemore, C. An analysis of orientation selectivity in the cat's visual cortex. Exp. Brain Res. 20, 1–17 (1974)

    CAS  Article  Google Scholar 

  30. 30

    Braitenberg, V. & Schuz, A. Anatomy of the Cortex: Statistics and Geometry (Springer, Berlin, 1991)

    Google Scholar 

  31. 31

    Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Peters, A. & Yilmaz, E. Neuronal organization in area 17 of cat visual cortex. Cereb. Cortex 3, 49–68 (1993)

    CAS  Article  Google Scholar 

  33. 33

    Mountcastle, V. B. Perceptual Neuroscience: the Cerebral Cortex (Harvard University, Cambridge, 1998)

    Google Scholar 

  34. 34

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 〈http://www.biomedical-engineering-online.com〉 (2003)

    Article  Google Scholar 

  35. 35

    Kara, P. & Reid, R. C. Efficacy of retinal spikes in driving cortical responses. J. Neurosci. 23, 8547–8557 (2003)

    CAS  Article  Google Scholar 

  36. 36

    Berman, N. E., Wilkes, M. E. & Payne, B. R. Organization of orientation and direction selectivity in areas 17 and 18 of cat cerebral cortex. J. Neurophysiol. 58, 676–699 (1987)

    CAS  Article  Google Scholar 

  37. 37

    Kim, D. S., Matsuda, Y., Ohki, K., Ajima, A. & Tanaka, S. Geometrical and topological relationships between multiple functional maps in cat primary visual cortex. Neuroreport 10, 2515–2522 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Takahashi for involvement in the first set of experiments; B. Sabatini, W. Regehr, R. Yuste and F. Engert for discussions and technical advice; S. Yurgenson for technical support and programming; A. Kerlin and J. Leong for programming; A. Vagodny for surgical assistance; and R. Yuste and J. Pezaris for comments on the manuscript. This work was supported by grants from the NEI and fellowships from the Uehara Foundation (K.O.), the Goldenson Fund (S.C.) and HHMI (Y.H.C.).Authors' contributions K.O. started this work and played the major role in the project; S.C., Y.H.C. and P.K. contributed equally to its completion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Clay Reid.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

The calcium indicator OGB-1 AM preferentially stains neurons rather than glia when pressure ejected directly into layer 2/3 of the visual cortex in vivo. (JPG 57 kb)

Supplementary Figure 2

Single condition ( F/F) maps in rat and cat visual cortex. (PDF 161 kb)

Supplementary Figure 3

Columnar organization of direction discontinuity maps in cat visual cortex. (JPG 55 kb)

Supplementary Discussion

This section addresses various technical issues concerning two-photon calcium imaging that we deemed too important to omit, but were of insufficient interest to the general readership to include in the main discussion. (PDF 89 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohki, K., Chung, S., Ch'ng, Y. et al. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005). https://doi.org/10.1038/nature03274

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing