Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth-mass dark-matter haloes as the first structures in the early Universe

Abstract

The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang1. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter2,3,4, the determination of which is one of the biggest challenges in present-day science5,6,7. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 1015 to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of γ-rays (from particle–particle annihilation).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A zoom into one of the first objects to form in the Universe.
Figure 2: Radial density profiles of three typical minihaloes at redshift z = 26.
Figure 3: The abundance of collapsed and virialized dark-matter haloes of a given mass.

References

  1. 1

    Peebles, P. J. E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. 263, L1–L5 (1982)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hofmann, S., Schwarz, D. J. & Stöcker, H. Damping scales of neutralino cold dark matter. Phys. Rev. D 64, 083507 (2001)

    ADS  Article  Google Scholar 

  3. 3

    Berezinsky, V., Dokuchaev, V. & Eroshenko, Y. Small-scale clumps in the galactic halo and dark matter annihilation. Phys. Rev. D 68, 103003 (2003)

    ADS  Article  Google Scholar 

  4. 4

    Green, A. M., Hofmann, S. & Schwarz, D. J. The power spectrum of SUSY-CDM on sub-galactic scales. Mon. Not. R. Astron. Soc. 353, L23–L27 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996)

    ADS  Article  Google Scholar 

  6. 6

    Ellis, J. R., Olive, K. A. & Santoso, Y. Constraining supersymmetry. New J. Phys. 4, 32 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Bertone, G., Hooper, D. & Silk, J. Particle dark matter: Evidence, candidates and constraints. Preprint at http://arXiv.org/astro-ph/0404175, (2004).

  8. 8

    Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    ADS  Article  Google Scholar 

  9. 9

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    ADS  Article  Google Scholar 

  10. 10

    Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    ADS  Article  Google Scholar 

  11. 11

    Tegmark, M. et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    ADS  Article  Google Scholar 

  12. 12

    Peebles, P. J. E. Dark matter and the origin of galaxies and globular star clusters. Astrophys. J. 277, 470–477 (1984)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Tegmark, M. et al. How small were the first cosmological objects? Astrophys. J. 474, 1–12 (1997)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Turner, M. The case for omega mass = 0.33 + / - 0.035. Astrophys. J. 576, L101–L104 (2002)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lake, G. Detectability of gamma-rays from clumps of dark matter. Nature 346, 39–40 (1990)

    ADS  Article  Google Scholar 

  16. 16

    Bergstrom, L., Edsjo, J., Gondolo, P. & Ullio, P. Clumpy neutralino dark matter. Phys. Rev. D 59, 043506 (1999)

    ADS  Article  Google Scholar 

  17. 17

    Calcáneo-Roldán, C. & Moore, B. Surface brightness of dark matter: Unique signatures of neutralino annihilation in the galactic halo. Phys. Rev. D 62, 123005 (2000)

    ADS  Article  Google Scholar 

  18. 18

    Prada, F., Klypin, A., Flix, J., Martinez, M. & Simonneau, E. Astrophysical inputs on the SUSY dark matter annihilation detectability. Preprint at http://arXiv.org/astro-ph/0401512, (2004).

  19. 19

    Bertschinger, E. Multiscale gaussian random fields at their application to cosmological simulations. Astrophys. J. Suppl. 137, 1–20 (2001)

    ADS  Article  Google Scholar 

  20. 20

    Tasitsiomi, A., Kravtsov, A. V., Gottlober, S. & Klypin, A. A. Density profiles of LCDM clusters. Astrophys. J. 607, 125–139 (2004)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Reed, D. et al. Evolution of the mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 346, 565–572 (2003)

    ADS  Article  Google Scholar 

  22. 22

    Diemand, J., Moore, B. & Stadel, J. Velocity and spatial biases in cold dark matter subhalo distributions. Mon. Not. R. Astron. Soc. 352, 535–546 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Moore, B. et al. Dark matter in Draco and the Local Group: Implications for direct detection experiments. Phys. Rev. D 64, 063508 (2001)

    ADS  Article  Google Scholar 

  24. 24

    Schmidt, R. & Wambsganss, J. Limits on MACHOs from microlensing in the double quasar Q0957 + 561. Astron. Astrophys. 335, 379–387 (1998)

    ADS  Google Scholar 

  25. 25

    Mori, M. et al. (The CANGAROO Collaboration). Status of the CANGAROO-III project. AIP Conf. Proc. 558, 578–581 (2001)

    ADS  Article  Google Scholar 

  26. 26

    Cogan, P. et al. (The VERITAS Collaboration). An overview of the VERITAS prototype telescope and camera. Preprint at http://arXiv.org/astro-ph/0408155, (2004).

  27. 27

    Hinton, J. A. et al. (The HESS Collaboration). The status of the HESS project. New Astron. Rev. 48, 331–337 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Cortina, J. et al. (The MAGIC Collaboration). Status and first results of the MAGIC telescope. Preprint at http://arXiv.org/astro-ph/0407475, (2004).

  29. 29

    Koushiappas, S. M., Zentner, A. R. & Walker, T. P. Observability of gamma rays from neutralino annihilations in the Milky Way substructure. Phys. Rev. D 69, 043501 (2004)

    ADS  Article  Google Scholar 

  30. 30

    Diemand, J., Moore, B. & Stadel, J. Convergence and scatter of cluster density profiles. Mon. Not. R. Astron. Soc. 353, 624–632 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Green, D. Schwarz, P. Jetzer, M. Miranda, A. Maccio and G. Bertone for discussions. All computations were performed on the zBox supercomputer at the University of Zurich. This work was supported by the Swiss National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Moore.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diemand, J., Moore, B. & Stadel, J. Earth-mass dark-matter haloes as the first structures in the early Universe. Nature 433, 389–391 (2005). https://doi.org/10.1038/nature03270

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing