Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle

Abstract

The mineral olivine dominates the composition of the Earth's upper mantle and hence controls its mechanical behaviour and seismic anisotropy. Experiments at high temperature and moderate pressure, and extensive data on naturally deformed mantle rocks, have led to the conclusion that olivine at upper-mantle conditions deforms essentially by dislocation creep with dominant [100] slip. The resulting crystal preferred orientation has been used extensively to explain the strong seismic anisotropy observed down to 250 km depth1,2,3,4. The rapid decrease of anisotropy below this depth has been interpreted as marking the transition from dislocation to diffusion creep in the upper mantle5. But new high-pressure experiments suggest that dislocation creep also dominates in the lower part of the upper mantle, but with a different slip direction. Here we show that this high-pressure dislocation creep produces crystal preferred orientations resulting in extremely low seismic anisotropy, consistent with seismological observations below 250 km depth. These results raise new questions about the mechanical state of the lower part of the upper mantle and its coupling with layers both above and below.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preferred orientation of [100], [010] and [001] crystallographic axes in synthetic olivine polycrystal S2954 deformed at 1,400 °C and 11 GPa confining pressure in simple shear9.
Figure 2: Olivine crystal preferred orientations predicted using a viscoplastic self-consistent model.
Figure 3: Modelled three-dimensional compressional velocity and shear wave anisotropy distributions, and fastest shear wave polarization.

Similar content being viewed by others

References

  1. Montagner, J.-P. Seismic anisotropy of the Pacific Ocean inferred from long-period surface waves dispersion. Phys. Earth Planet. Inter. 38, 28–50 (1985)

    Article  ADS  Google Scholar 

  2. Cara, M. & Lévèque, J. L. Anisotropy of the asthenosphere: The higher mode data of the Pacific revisited. Geophys. Res. Lett. 15, 205–208 (1988)

    Article  ADS  Google Scholar 

  3. Nishimura, C. E. & Forsyth, D. W. The anisotropic structure of the upper mantle in the Pacific. Geophys. J. 96, 203–230 (1989)

    Article  ADS  Google Scholar 

  4. Montagner, J.-P. & Kennett, B. L. N. How to reconcile body-wave and normal-mode reference earth models. Geophys. J. Int. 125, 229–248 (1996)

    Article  ADS  Google Scholar 

  5. Karato, S.-I. On the Lehman discontinuity. Geophys. Res. Lett. 19, 2255–2258 (1992)

    Article  ADS  Google Scholar 

  6. Karato, S. I. & Rubie, D. C. Toward an experimental study of deep mantle rheology: a new multianvil sample assembly for deformation studies under high pressures and temperatures. J. Geophys. Res. 102, 20111–20122 (1997)

    Article  ADS  Google Scholar 

  7. Cordier, P. & Rubie, D. C. Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus. Mater. Sci. Eng. A 309–310, 38–43 (2001)

    Article  Google Scholar 

  8. Durham, W. B., Weidner, D. J., Karato, S. I. & Wang, Y. in Plastic Deformation of Minerals and Rocks (eds Karato, S.-I. & Wenk, H.-R.) (American Mineralogical Society, Washington, 2002)

    Google Scholar 

  9. Couvy, H. et al. Shear deformation experiments of forsterite at 11 GPa – 1400 °C in the multianvil apparatus. Eur. J. Mineral. (in the press)

  10. Tommasi, A. Forward modeling of the development of seismic anisotropy in the upper mantle. Earth Planet. Sci. Lett. 160, 1–13 (1998)

    Article  CAS  ADS  Google Scholar 

  11. Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet. Sci. 24, 385–432 (1996)

    Article  CAS  ADS  Google Scholar 

  12. Ekstrom, G. & Diewonski, A. M. The unique anisotropy of the Pacific upper mantle. Nature 394, 168–172 (1998)

    Article  CAS  ADS  Google Scholar 

  13. Gung, Y., Panning, M. & Romanowicz, B. Global anisotropy and the thickness of continents. Nature 422, 707–711 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Lévêque, J. J., Debayle, E. & Maupin, V. Anisotropy in the Indian Ocean upper mantle from Rayleigh and Love waveform inversion. Geophys. J. Int. 133, 529–540 (1998)

    Article  ADS  Google Scholar 

  15. Gaherty, J. B., Jordan, T. H. & Gee, L. S. Seismic structure of the upper mantle in the central Pacific corridor. J. Geophys. Res. 101, 22291–22309 (1996)

    Article  ADS  Google Scholar 

  16. Revenaugh, J. & Jordan, T. Mantle layering from ScS reverberations 3. The upper mantle. J. Geophys. Res. 96, 19781–19810 (1991)

    Article  ADS  Google Scholar 

  17. Li, L., Raterron, P., Weidner, D., Chen, J. & Vaughan, M. T. Stress measurements of deforming olivine at high pressure. Phys. Earth Planet. Inter. 143–144, 357–367 (2004)

    Article  ADS  Google Scholar 

  18. Li, L., Raterron, P., Weidner, D. & Chen, J. Olivine flow mechanisms at 8 GPa. Phys. Earth Planet. Inter. 138, 113–129 (2003)

    Article  CAS  ADS  Google Scholar 

  19. Ben Ismail, W. & Mainprice, D. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–158 (1998)

    Article  ADS  Google Scholar 

  20. Ben Ismail, W., Barruol, G. & Mainprice, D. The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules. Geophys. Res. Lett. 28, 2497–2500 (2001)

    Article  CAS  ADS  Google Scholar 

  21. Vauchez, A., Dineur, F. & Rudnick, R. Microstructure, texture, and seismic anisotropy of the lithospheric mantle above a plume. Insights from the Labait volcano xenoliths. Earth Planet. Sci. Lett. (in the press)

  22. Lebensohn, R. A. & Tomé, C. N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993)

    Article  CAS  Google Scholar 

  23. Wenk, H.-R., Bennet, K., Canova, G. R. & Molinari, A. Modelling plastic deformation of peridotite with the self-consistent theory. J. Geophys. Res. 96, 8337–8349 (1991)

    Article  ADS  Google Scholar 

  24. Tommasi, A., Mainprice, D., Canova, G. & Chastel, Y. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations. Implications for upper mantle seismic anisotropy. J. Geophys. Res. 105, 7893–7908 (2000)

    Article  CAS  ADS  Google Scholar 

  25. Abramson, E. H., Brown, M., Slutsky, L. J. & Zaug, J. The elastic constants of San Carlos olivine up to 17 GPa. J. Geophys. Res. 102, 12252–12263 (1997)

    Article  ADS  Google Scholar 

  26. Chai, M., Brown, J. M. & Slutsky, L. J. The elastic constants of a pyrope-grossular-almandine garnet up to 20 GPa. Geophys. Res. Lett. 24, 523–526 (1997)

    Article  ADS  Google Scholar 

  27. Collins, M. D. & Brown, J. M. Elasticity of an upper mantle clinopyroxene. Phys. Chem. Miner. 26, 7–13 (1998)

    Article  CAS  ADS  Google Scholar 

  28. Mainprice, D., Bascou, J., Cordier, P. & Tommasi, A. Crystal preferred orientations of garnet: Comparison between numerical simulations and electron back-scattered diffraction (EBSD) measurements in naturally deformed eclogites. J. Struct. Geol. 26, 2089–2102 (2004)

    Article  ADS  Google Scholar 

  29. Bascou, J., Tommasi, A. & Mainprice, D. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J. Struct. Geol. 24, 1357–1368 (2002)

    Article  ADS  Google Scholar 

  30. Mainprice, D., Barruol, G. & Ben Ismaïl, W. in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S.-I., Forte, A. M., Liebermann, R. C., Masters, G. & Stixrude, L.) 237–264 (AGU, Washington DC, 2000)

    Book  Google Scholar 

Download references

Acknowledgements

This Letter is dedicated to the memory of G. Canova, who introduced A.T. and D.M. to VPSC modelling. H.C. was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mainprice.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainprice, D., Tommasi, A., Couvy, H. et al. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature 433, 731–733 (2005). https://doi.org/10.1038/nature03266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03266

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing