Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drosophila Spire is an actin nucleation factor

Abstract

The actin cytoskeleton is essential for many cellular functions including shape determination, intracellular transport and locomotion. Previous work has identified two factors—the Arp2/3 complex and the formin family of proteins—that nucleate new actin filaments via different mechanisms. Here we show that the Drosophila protein Spire represents a third class of actin nucleation factor. In vitro, Spire nucleates new filaments at a rate that is similar to that of the formin family of proteins but slower than in the activated Arp2/3 complex, and it remains associated with the slow-growing pointed end of the new filament. Spire contains a cluster of four WASP homology 2 (WH2) domains, each of which binds an actin monomer. Maximal nucleation activity requires all four WH2 domains along with an additional actin-binding motif, conserved among Spire proteins. Spire itself is conserved among metazoans and, together with the formin Cappuccino, is required for axis specification in oocytes and embryos, suggesting that multiple actin nucleation factors collaborate to construct essential cytoskeletal structures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spir nucleates actin filaments.
Figure 2: Spir, Capu and the Arp2/3 complex nucleate polymerization by distinct mechanisms.
Figure 3: Molecular dissection of Spir.
Figure 4: Spir–actin complexes are rod-like structures.
Figure 5: Mechanism of nucleation by Spir.

References

  1. Manseau, L. J. & Schupbach, T. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3, 1437–1452 (1989)

    CAS  Article  PubMed  Google Scholar 

  2. Manseau, L., Calley, J. & Phan, H. Profilin is required for posterior patterning of the Drosophila oocyte. Development 122, 2109–2116 (1996)

    CAS  PubMed  Google Scholar 

  3. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 260–269 (2002)

    CAS  Article  PubMed  Google Scholar 

  5. Otto, I. M. et al. The p150-Spir protein provides a link between c-Jun N-terminal kinase function and actin reorganization. Curr. Biol. 10, 345–348 (2000)

    CAS  Article  PubMed  Google Scholar 

  6. Wellington, A. et al. Spire contains actin binding domains and is related to ascidian posterior end mark-5. Development 126, 5267–5274 (1999)

    CAS  PubMed  Google Scholar 

  7. Paunola, E., Mattila, P. K. & Lappalainen, P. WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett. 513, 92–97 (2002)

    CAS  Article  PubMed  Google Scholar 

  8. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999)

    CAS  Article  PubMed  Google Scholar 

  9. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Biol. 10, 591–598 (2003)

    CAS  Article  PubMed  Google Scholar 

  10. Abo, A. Understanding the molecular basis of Wiskott-Aldrich syndrome. Cell. Mol. Life Sci. 54, 1145–1153 (1998)

    CAS  Article  PubMed  Google Scholar 

  11. Devreotes, P. N. & Zigmond, S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988)

    CAS  Article  PubMed  Google Scholar 

  12. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  13. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Kovar, D. R., Kuhn, J. R., Tichy, A. L. & Pollard, T. D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105 (2004)

    CAS  Article  PubMed  Google Scholar 

  16. Hertzog, M. et al. The β-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell 117, 611–623 (2004)

    CAS  Article  PubMed  Google Scholar 

  17. Hertzog, M., Yarmola, E. G., Didry, D., Bubb, M. R. & Carlier, M. F. Control of actin dynamics by proteins made of β-thymosin repeats: the actobindin family. J. Biol. Chem. 277, 14786–14792 (2002)

    CAS  Article  PubMed  Google Scholar 

  18. Dayel, M. J. & Mullins, R. D. Activation of Arp2/3 complex: Addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS Biol. 2, E91 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sept, D. & McCammon, J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Irobi, E. et al. Structural basis of actin sequestration by thymosin-β4: implications for WH2 proteins. EMBO J. 23, 3599–3608 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    CAS  Article  PubMed  Google Scholar 

  22. Fehrenbacher, K., Huckaba, T., Yang, H. C., Boldogh, I. & Pon, L. Actin comet tails, endosomes and endosymbionts. J. Exp. Biol. 206, 1977–1984 (2003)

    CAS  Article  PubMed  Google Scholar 

  23. Kovar, D. R. & Pollard, T. D. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc. Natl Acad. Sci. USA 101, 14725–14730 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999)

    CAS  Article  PubMed  Google Scholar 

  25. Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002)

    CAS  Article  PubMed  Google Scholar 

  26. Pelham, R. J. & Chang, F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419, 82–86 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. Schumacher, N., Borawski, J. M., Leberfinger, C. B., Gessler, M. & Kerkhoff, E. Overlapping expression pattern of the actin organizers Spir-1 and formin-2 in the developing mouse nervous system and the adult brain. Gene Expr. Patterns 4, 249–255 (2004)

    CAS  Article  PubMed  Google Scholar 

  28. O'Rourke, D. A. et al. Hepatocyte growth factor induces MAPK-dependent formin IV translocation in renal epithelial cells. J. Am. Soc. Nephrol. 11, 2212–2221 (2000)

    CAS  PubMed  Google Scholar 

  29. Kerkhoff, E. et al. The Spir actin organizers are involved in vesicle transport processes. Curr. Biol. 11, 1963–1968 (2001)

    CAS  Article  PubMed  Google Scholar 

  30. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Jankovics, F., Sinka, R. & Erdelyi, M. An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte. Genetics 158, 1177–1188 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R. S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002)

    CAS  PubMed  Google Scholar 

  33. Emmons, S. et al. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev. 9, 2482–2494 (1995)

    CAS  Article  PubMed  Google Scholar 

  34. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH, Pew Charitable Trust and the Sandler Family Supporting Foundation (to R.D.M.). E.K. was supported by the Deutsche Forschungsgemeinschaft and the Wilhelm Sander-Stiftung. We thank C. B. Leberfinger and J. M. Borawski for technical assistance, and members of the Mullins laboratory for technical help and for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dyche Mullins.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Data, Supplementary Figures S1-9 and Supplementary Table S1. It also includes additional references. (DOC 1925 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quinlan, M., Heuser, J., Kerkhoff, E. et al. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005). https://doi.org/10.1038/nature03241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03241

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing