Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts


RNA editing is a process of RNA maturation involved in the insertion, deletion or modification of nucleotides1. In organellar transcripts of higher plants, specific cytidine residues are converted into uridine residues. In many cases, editing results in the restoration of conserved amino acid residues, a process that is essential for protein function in plastids2,3. Despite the technical breakthrough in establishing systems in vivo4 and in vitro5 for analysing RNA editing, its machinery still remains to be identified in higher plants. Here we introduce a genetic approach and report the discovery of a gene responsible for the specific RNA editing event in the chloroplast.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of crr4 mutants.
Figure 2: Structure of CRR4.
Figure 3: Analysis of RNA editing in the ndhD initiation codon.
Figure 4: Relationship between the CRR4 expression level and the extent of RNA editing.


  1. Smit, H. C., Gott, J. M. & Hanson, M. R. A guide to RNA editing. RNA 3, 1105–1123 (1997)

    Google Scholar 

  2. Bock, R., Kössel, H. & Maliga, P. Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J. 13, 4623–4628 (1994)

    CAS  Article  Google Scholar 

  3. Sasaki, Y., Kozaki, A., Ohmori, A., Iguchi, H. & Nagano, Y. Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants. J. Biol. Chem. 276, 3937–3940 (2000)

    Article  Google Scholar 

  4. Chaudhuri, S., Carrer, H. & Maliga, P. Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids. EMBO J. 14, 2951–2957 (1995)

    CAS  Article  Google Scholar 

  5. Hirose, T. & Sugiura, M. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J. 20, 1144–1152 (2001)

    CAS  Article  Google Scholar 

  6. Shikanai, T. et al. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc. Natl Acad. Sci. USA 95, 9705–9709 (1998)

    ADS  CAS  Article  Google Scholar 

  7. Munekage, Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004)

    ADS  CAS  Article  Google Scholar 

  8. Hashimoto, M., Endo, T., Peltier, G., Tasaka, M. & Shikanai, T. A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J. 36, 541–549 (2003)

    CAS  Article  Google Scholar 

  9. Shikanai, T., Munekage, Y., Shimizu, K., Endo, T. & Hashimoto, T. Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol. 40, 1134–1142 (1999)

    CAS  Article  Google Scholar 

  10. Aubourg, S., Boudet, N., Kreis, M. & Lecharny, A. In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol. Biol. 42, 603–613 (2000)

    CAS  Article  Google Scholar 

  11. Small, I. D. & Peeters, N. The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 46–47 (2000)

    CAS  Article  Google Scholar 

  12. Lurin, C. et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103

  13. Fisk, D. G., Walker, M. B. & Barkan, A. Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J. 18, 2621–2630 (1999)

    CAS  Article  Google Scholar 

  14. Meierhoff, K., Felder, S., Nakamura, T., Bechtold, N. & Schuster, G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15, 1480–1495 (2003)

    CAS  Article  Google Scholar 

  15. Yamazaki, H., Tasaka, M. & Shikanai, T. PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis. Plant J. 38, 152–163 (2004)

    CAS  Article  Google Scholar 

  16. Williams, P. M. & Barkan, A. A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J. 36, 675–686 (2003)

    CAS  Article  Google Scholar 

  17. Manthey, M. G. & McEwen, J. E. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J. 14, 4031–4043 (1995)

    CAS  Article  Google Scholar 

  18. Coffin, J. W., Dhillon, R., Ritzel, R. G. & Nargang, F. E. The Neurospora crassa cya-5 nuclear gene encodes a protein with a region of homology to the Saccharomyces cerevisiae PET309 protein and is required in a post-transcriptional step for the expression of the mitochondrially encoded COXI protein. Curr. Genet. 32, 273–280 (1997)

    CAS  Article  Google Scholar 

  19. Bentolila, S., Alfonso, A. A. & Hanson, M. R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl Acad. Sci. USA 99, 10887–10892 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Kazama, T. & Toriyama, K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 544, 99–102 (2003)

    CAS  Article  Google Scholar 

  21. Koizuka, N. et al. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J. 34, 407–415 (2003)

    CAS  Article  Google Scholar 

  22. Lutz, K. A. & Maliga, P. Lack of conservation of editing sites in mRNAs that encode subunits of the NAD(P)H dehydrogenase complex in plastids and mitochondria of Arabidopsis thaliana. Curr. Genet. 40, 214–219 (2001)

    CAS  Article  Google Scholar 

  23. Neckermann, K., Zeltz, P., Igloi, G. L., Kössel, H. & Maier, R. M. The role of RNA editing in conservation of start codons in chloroplast genomes. Gene 146, 177–182 (1994)

    CAS  Article  Google Scholar 

  24. Hirose, T. & Sugiura, M. Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J. 16, 6804–6811 (1997)

    CAS  Article  Google Scholar 

  25. del Campo, E. M., Sabater, B. & Martin, M. Post-transcriptional control of chloroplast gene expression. Accumulation of stable psaC mRNA is due to downstream RNA cleavages in the ndhD gene. J. Biol. Chem. 277, 36457–36464 (2002)

    CAS  Article  Google Scholar 

  26. Chateigner-Boutin, A.-L. & Hanson, M. R. Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar cis-elements. Nucleic Acids Res. 31, 2586–2594 (2003)

    CAS  Article  Google Scholar 

  27. Guera, A., Nova, P. G. & Sabater, B. Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: changes during photomorphogenesis of chloroplasts. Plant Cell Physiol. 41, 49–59 (2000)

    CAS  Article  Google Scholar 

  28. Keegan, L. P., Gallo, A. & O'Connell, M. A. The many roles of an RNA editor. Nature Rev. Genet. 2, 869–878 (2001)

    CAS  Article  Google Scholar 

  29. Miyamoto, T., Obokata, J. & Sugiura, M. A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc. Natl Acad. Sci. USA 101, 48–52 (2004)

    ADS  CAS  Article  Google Scholar 

  30. Glegé, P. & Brennicke, A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc. Natl Acad. Sci. USA 96, 15324–15329 (1999)

    ADS  Article  Google Scholar 

Download references


We thank M. Miyata and E. Habe for their technical assistance; T. Endo, G. Peltier and the late A. Watanabe for antibodies; and J. Obokata for suggestions. T. Shikanai was supported by grants from JSPS and Ministry of Education, Sports, Culture, Science and Technology, Japan.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Toshiharu Shikanai.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

RNA protection assay. (GIF 47 kb)

Supplementary Figure Legend

Legend to accompany Supplementary Figure S1. (DOC 21 kb)

Supplementary Methods

This contains details of the methods for the quantitative analysis of RNA editing and the determination if RNA ends. (DOC 20 kb)

Supplementary Tables

Contains Supplementary Tables S1-S3. Supplementary Table S1 details the efficiency of the RNA editing in ndhD initiation codon. Supplementary Table S2 details the RNA editing extents in ndh genes. Supplementary Table S3 lists the oligonucleotides used in the study. (DOC 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotera, E., Tasaka, M. & Shikanai, T. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433, 326–330 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing