Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots

Abstract

Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIN expression and protein localization in roots of wild-type (WT) and pin mutant Arabidopsis.
Figure 2: PIN genes control meristem size and patterning in Arabidopsis roots.
Figure 3: PIN genes and embryonic patterning.
Figure 4: PLT genes regulate PIN transcript levels.
Figure 5: Model for primordium formation by PIN–PLT interactions.

Similar content being viewed by others

References

  1. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999)

    Article  CAS  Google Scholar 

  2. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  Google Scholar 

  3. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Gälweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998)

    Article  ADS  Google Scholar 

  6. Müller, A. et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911 (1998)

    Article  Google Scholar 

  7. Friml, J., Wisniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002)

    Article  ADS  Google Scholar 

  8. Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673 (2002)

    Article  CAS  Google Scholar 

  9. Luschnig, C., Gaxiola, R. A., Grisafi, P. & Fink, G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187 (1998)

    Article  CAS  Google Scholar 

  10. Utsuno, K., Shikanai, T., Yamada, Y. & Hashimoto, T. Agr, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39, 1111–1118 (1998)

    Article  CAS  Google Scholar 

  11. Chen, R. et al. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl Acad. Sci. USA 95, 15112–15117 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Noh, B., Murphy, A. S. & Spalding, E. P. Multidrug Resistance–like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441–2454 (2001)

    Article  CAS  Google Scholar 

  13. Noh, B., Bandyopadhyay, A., Peer, W. A., Spalding, E. P. & Murphy, A. S. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423, 999–1002 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999)

    Article  CAS  Google Scholar 

  15. Geldner, N., Friml, J., Stierhof, Y. D., Jürgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Geldner, N. et al. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389–400 (2004)

    Article  CAS  Google Scholar 

  17. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004)

    Article  CAS  Google Scholar 

  18. Sieberer, T. et al. Post-transcriptional control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. Curr. Biol. 10, 1595–1598 (2000)

    Article  CAS  Google Scholar 

  19. Srivastava, L. Plant Growth and Development: Hormones and Environment (Academic, New York, 2002)

    Google Scholar 

  20. Okada, K., Ueda, J., Komaki, M., Bell, C. & Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991)

    Article  CAS  Google Scholar 

  21. Davies, P. J., Doro, J. A. & Tarbox, A. W. The movement and physiological effect of indoleacetic acid following point applications to root tips of Zea mays. Physiol. Plant. 36, 333–337 (1976)

    Article  CAS  Google Scholar 

  22. Rashotte, A. M., Brady, S. R., Reed, R. C., Ante, S. J. & Muday, G. K. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122, 481–490 (2000)

    Article  CAS  Google Scholar 

  23. Tsugeki, R. & Fedoroff, N. V. Genetic ablation of root cap cells in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 12941–12946 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Haecker, A. et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668 (2004)

    Article  CAS  Google Scholar 

  25. Kares, C., Prinsen, E., Van Onckelen, H. & Otten, L. IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol. Biol. 15, 225–236 (1990)

    Article  CAS  Google Scholar 

  26. Ottenschläger, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003)

    Article  ADS  Google Scholar 

  27. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996)

    Article  CAS  Google Scholar 

  28. Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567 (2000)

    Article  CAS  Google Scholar 

  29. Scheres, B. et al. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475–2487 (1994)

    CAS  Google Scholar 

  30. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998)

    Article  CAS  Google Scholar 

  31. Long, J. A. & Barton, M. K. The development of apical embryonic pattern in Arabidopsis. Development 125, 3027–3035 (1998)

    CAS  PubMed  Google Scholar 

  32. Gallois, J. L., Nora, F. R., Mizukami, Y. & Sablowski, R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18, 375–380 (2004)

    Article  CAS  Google Scholar 

  33. Ljung, K. et al. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50, 309–332 (2002)

    Article  Google Scholar 

  34. Estelle, M. Auxin signaling and regulated protein degradation. Trends Plant Sci. 9, 302–308 (2004)

    Article  Google Scholar 

  35. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)

    Article  CAS  Google Scholar 

  36. Willemsen, V., Wolkenfelt, H., de Vrieze, G., Weisbeek, P. & Scheres, B. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125, 521–531 (1998)

    CAS  PubMed  Google Scholar 

  37. Friml, J., Benkova, E., Mayer, U., Palme, K. & Muster, G. Automated whole-mount localization techniques for plant seedlings. Plant J. 34, 115–124 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Fedoroff and R. Tsugeki for seeds of pRCP1::DT-AtsM; P. Hogeweg, S. Smeekens and members of the root laboratory for critical reading of the manuscript; and F. Kindt and R. Leito for artwork. K.P. acknowledges R. Nitschke and the Life Imaging Center (University of Freiburg). This work was supported by an NWO-PIONIER grant (I.B., J.X., M.W. and B.S.) and by the Deutsche Forschungsgemeinschaft and the FCI (I.P. and K.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Scheres.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

Includes Supplementary Methods, additional references and full legends for Supplementary Tables 1–3 and Supplementary Figures S1–3. (DOC 36 kb)

Supplementary Table 1

Allelic combinations used to generate multiple mutants. Numbers were given to each allelic combination and used as superscript reference in the text, for example for pin1pin2(AC1) corresponds to the combination of pin1-1 and pin2eir1. (DOC 49 kb)

Supplementary Table 2

a Frequencies of aberrant divisions observed in embryos of pin mutant combinations. b Phenotype frequencies in explants from ovules of quadruple mutants described in (a). (DOC 33 kb)

Supplementary Table 3

Primers used for genotyping pin mutants. (DOC 26 kb)

Supplementary Figure S1

Root meristem organization in single and double pin mutants. (JPG 135 kb)

Supplementary Figure S2

Histograms depicting cell division and cell expansion in multiple pin mutants using different allele combinations represented in percentage of wild-type values. (JPG 123 kb)

Supplementary Figure S3

Auxin redistribution monitored by DR5::YFP in RCH1::IAAH plants (the RCH1 promoter is root-meristem specific) after IAM application. (JPG 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blilou, I., Xu, J., Wildwater, M. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005). https://doi.org/10.1038/nature03184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03184

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing