Article | Published:

Tomographic imaging of molecular orbitals

Nature volume 432, pages 867871 (16 December 2004) | Download Citation

Subjects

Abstract

Single-electron wavefunctions, or orbitals, are the mathematical constructs used to describe the multi-electron wavefunction of molecules. Because the highest-lying orbitals are responsible for chemical properties, they are of particular interest. To observe these orbitals change as bonds are formed and broken is to observe the essence of chemistry. Yet single orbitals are difficult to observe experimentally, and until now, this has been impossible on the timescale of chemical reactions. Here we demonstrate that the full three-dimensional structure of a single orbital can be imaged by a seemingly unlikely technique, using high harmonics generated from intense femtosecond laser pulses focused on aligned molecules. Applying this approach to a series of molecular alignments, we accomplish a tomographic reconstruction of the highest occupied molecular orbital of N2. The method also allows us to follow the attosecond dynamics of an electron wave packet.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Electronic structures of polyatomic molecules and valence. II. General considerations. Phys. Rev. 41, 49–71 (1932)

  2. 2.

    The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell Univ. Press, Ithaca, New York, 1960)

  3. 3.

    , , , & Imaging of orbital electron densities by electron momentum spectroscopy—a chemical interpretation of the binary (e, 2e) reaction. Chem. Phys. 270, 13–30 (2001)

  4. 4.

    , , & Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

  5. 5.

    & High-order harmonic generation in nitrogen molecules with subpicosecond visible dye-laser pulses. Appl. Phys. B 61, 493–498 (1995)

  6. 6.

    , , , & High harmonic generation in atomic and diatomic molecular gases using intense picosecond laser pulses—a comparison. J. Phys. B 27, 5119–5130 (1994)

  7. 7.

    , , , & High-order harmonic generation in aligned molecules. Phys. Rev. Lett. 87, 183901 (2001)

  8. 8.

    et al. Role of orbital symmetry in high-order harmonic generation from aligned molecules. Phys. Rev. A 69, 031804(R) (2004)

  9. 9.

    et al. Investigations of electron wave-packet dynamics and high-order harmonic generation in laser-aligned molecules. J. Mod. Opt. 50, 561–571 (2003)

  10. 10.

    et al. High-order harmonic generation in laser-aligned molecules. Phys. Rev. A 65, 053805 (2002)

  11. 11.

    , , & Orientation dependence of high-order harmonic generation in molecules. Phys. Rev. A 67, 023819 (2003)

  12. 12.

    & Density-functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989)

  13. 13.

    & Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, New York, 2001)

  14. 14.

    & Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003)

  15. 15.

    , , & Deflection of neutral molecules using the nonresonant dipole force. Phys. Rev. Lett. 79, 2787–2790 (1997)

  16. 16.

    et al. Controlling the alignment of neutral molecules by a strong laser field. J. Chem. Phys. 110, 10235–10238 (1999)

  17. 17.

    , , & Three dimensional alignment of molecules using elliptically polarized laser fields. Phys. Rev. Lett. 85, 2470–2473 (2000)

  18. 18.

    , , , & Controlling the orientation of polar molecules with combined electrostatic and pulsed nonresonant laser fields. Phys. Rev. Lett. 90, 083001 (2003)

  19. 19.

    & Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys. Rev. Lett. 87, 153902 (2001)

  20. 20.

    et al. Direct imaging of rotational wave-packet dynamics of diatomic molecules. Phys. Rev. A 68, 023406 (2003)

  21. 21.

    & Multiphoton Processes in Atoms (Springer, Heidelberg, 2000)

  22. 22.

    Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

  23. 23.

    et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002)

  24. 24.

    , , & High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, R3585–R3588 (1994)

  25. 25.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A. 49, 2117–2132 (1994)

  26. 26.

    , , & Calculation of the background emitted during high-harmonic generation. Phys. Rev. A 45, 3347–3349 (1992)

  27. 27.

    et al. Can harmonic generation cause non-sequential ionization? J. Phys. B 31, L841–L848 (1998)

  28. 28.

    et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003)

  29. 29.

    & Nonadiabatic tunnel ionization: Looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001)

  30. 30.

    , & Theory of molecular tunneling ionization. Phys. Rev. A 66, 033402 (2002)

  31. 31.

    , , & Reading diffraction images in strong field ionization of diatomic molecules. J. Phys. B 37, L243–L250 (2004)

  32. 32.

    , & First-principles calculations for the tunnel ionization rate of atoms and molecules. Phys. Rev. A 69, 053404 (2004)

  33. 33.

    et al. Alignment-dependent strong field ionization of molecules. Phys. Rev. Lett. 90, 233003 (2003)

  34. 34.

    , & Experimental determination of the quantum mechanical state of a molecular vibrational mode using fluorescence tomography. Phys. Rev. Lett. 74, 884–887 (1995)

  35. 35.

    , , & Quantum state tomography of dissociating molecules. Phys. Rev. Lett. 91, 090406 (2003)

  36. 36.

    , , & Nonlinear ionization of organic molecules in high intensity laser fields. Phys. Rev. Lett. 84, 5082–5085 (2000)

  37. 37.

    et al. Two-pulse alignment of molecules. J. Phys. B 37, L43–L48 (2004)

Download references

Acknowledgements

In addition to the NRC, we acknowledge financial support from the National Science and Engineering Research Council, Photonic Research Ontario, the Canadian Institute for Photonic Innovation, the Alexander von Humboldt-Stiftung and the Japan Society for the Promotion of Science. We thank M. Yu. Ivanov, M. Spanner, J. P. Marangos, M. Lein, P. H. Bucksbaum, I. A. Walmsley, D. Jonas, J. Tse and J. G. Underwood for discussions.

Author information

Affiliations

  1. National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada

    • J. Itatani
    • , J. Levesque
    • , D. Zeidler
    • , Hiromichi Niikura
    • , P. B. Corkum
    •  & D. M. Villeneuve
  2. University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada

    • J. Itatani
  3. INRS- Energie et Materiaux, 1650 boulevard Lionel-Boulet, CP 1020, Varennes, Québec J3X 1S2, Canada

    • J. Levesque
    • , H. Pépin
    •  & J. C. Kieffer
  4. PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi Saitama, 332-0012, Japan

    • Hiromichi Niikura

Authors

  1. Search for J. Itatani in:

  2. Search for J. Levesque in:

  3. Search for D. Zeidler in:

  4. Search for Hiromichi Niikura in:

  5. Search for H. Pépin in:

  6. Search for J. C. Kieffer in:

  7. Search for P. B. Corkum in:

  8. Search for D. M. Villeneuve in:

Competing interests

The authors declare that they have no competing financial interests.

Corresponding author

Correspondence to D. M. Villeneuve.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature03183

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.