Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tomographic imaging of molecular orbitals

Abstract

Single-electron wavefunctions, or orbitals, are the mathematical constructs used to describe the multi-electron wavefunction of molecules. Because the highest-lying orbitals are responsible for chemical properties, they are of particular interest. To observe these orbitals change as bonds are formed and broken is to observe the essence of chemistry. Yet single orbitals are difficult to observe experimentally, and until now, this has been impossible on the timescale of chemical reactions. Here we demonstrate that the full three-dimensional structure of a single orbital can be imaged by a seemingly unlikely technique, using high harmonics generated from intense femtosecond laser pulses focused on aligned molecules. Applying this approach to a series of molecular alignments, we accomplish a tomographic reconstruction of the highest occupied molecular orbital of N2. The method also allows us to follow the attosecond dynamics of an electron wave packet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the tunnel ionization process from an aligned molecule.
Figure 2: Illustration of a dipole induced by the superposition of a ground-state wavefunction ψg and a re-colliding plane wave packet ψc.
Figure 3: High harmonic spectra were recorded for N2 molecules aligned at 19 different angles between 0 and 90° relative to the polarization axis of the laser.
Figure 4: Molecular orbital wavefunction of N2.
Figure 5: A one-dimensional Schrödinger calculation shows that attosecond electronic wave-packet motion is resolved in the high harmonic spectra.

Similar content being viewed by others

References

  1. Mulliken, R. S. Electronic structures of polyatomic molecules and valence. II. General considerations. Phys. Rev. 41, 49–71 (1932)

    Article  ADS  CAS  Google Scholar 

  2. Linus, C. P. The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell Univ. Press, Ithaca, New York, 1960)

    Google Scholar 

  3. Brion, C. E., Cooper, G., Zheng, Y., Litvinyuk, I. V. & McCarthy, I. E. Imaging of orbital electron densities by electron momentum spectroscopy—a chemical interpretation of the binary (e, 2e) reaction. Chem. Phys. 270, 13–30 (2001)

    Article  CAS  Google Scholar 

  4. Binning, G., Rohrer, H., Gerber, Ch. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Sakai, H. & Miyazaki, K. High-order harmonic generation in nitrogen molecules with subpicosecond visible dye-laser pulses. Appl. Phys. B 61, 493–498 (1995)

    Article  ADS  Google Scholar 

  6. Liang, Y., Augst, A., Chin, S. L., Beaudoin, Y. & Chaker, M. High harmonic generation in atomic and diatomic molecular gases using intense picosecond laser pulses—a comparison. J. Phys. B 27, 5119–5130 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Velotta, R., Hay, N., Manson, M. B., Castillejo, M. & Marangos, J. P. High-order harmonic generation in aligned molecules. Phys. Rev. Lett. 87, 183901 (2001)

    Article  ADS  Google Scholar 

  8. de Nalda, R. et al. Role of orbital symmetry in high-order harmonic generation from aligned molecules. Phys. Rev. A 69, 031804(R) (2004)

    Article  ADS  Google Scholar 

  9. Hay, N. et al. Investigations of electron wave-packet dynamics and high-order harmonic generation in laser-aligned molecules. J. Mod. Opt. 50, 561–571 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Hay, N. et al. High-order harmonic generation in laser-aligned molecules. Phys. Rev. A 65, 053805 (2002)

    Article  ADS  Google Scholar 

  11. Lein, M., Corso, P. P., Marangos, J. P. & Knight, P. L. Orientation dependence of high-order harmonic generation in molecules. Phys. Rev. A 67, 023819 (2003)

    Article  ADS  Google Scholar 

  12. Parr, R. G. & Yang, W. Density-functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989)

    Google Scholar 

  13. Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, New York, 2001)

    Book  Google Scholar 

  14. Stapelfeldt, H. & Seideman, T. Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Stapelfeldt, H., Sakai, H., Constant, E. & Corkum, P. B. Deflection of neutral molecules using the nonresonant dipole force. Phys. Rev. Lett. 79, 2787–2790 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Sakai, H. et al. Controlling the alignment of neutral molecules by a strong laser field. J. Chem. Phys. 110, 10235–10238 (1999)

    Article  ADS  Google Scholar 

  17. Larsen, J. J., Hald, K., Bjerre, N. & Stapelfeldt, H. Three dimensional alignment of molecules using elliptically polarized laser fields. Phys. Rev. Lett. 85, 2470–2473 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Sakai, H., Minemoto, S., Nanjo, H., Tanji, H. & Suzuki, T. Controlling the orientation of polar molecules with combined electrostatic and pulsed nonresonant laser fields. Phys. Rev. Lett. 90, 083001 (2003)

    Article  ADS  Google Scholar 

  19. Rosca-Pruna, F. & Vrakking, M. J. J. Experimental observation of revival structures in picosecond laser-induced alignment of I2 . Phys. Rev. Lett. 87, 153902 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Dooley, P. W. et al. Direct imaging of rotational wave-packet dynamics of diatomic molecules. Phys. Rev. A 68, 023406 (2003)

    Article  ADS  Google Scholar 

  21. Delone, N. B. & Krainov, V. P. Multiphoton Processes in Atoms (Springer, Heidelberg, 2000)

    Book  Google Scholar 

  22. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Dietrich, P., Burnett, N. H., Ivanov, M. & Corkum, P. B. High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, R3585–R3588 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A. 49, 2117–2132 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Burnett, K., Reed, V. C., Cooper, J. & Knight, P. L. Calculation of the background emitted during high-harmonic generation. Phys. Rev. A 45, 3347–3349 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Sanpera, A. et al. Can harmonic generation cause non-sequential ionization? J. Phys. B 31, L841–L848 (1998)

    Article  CAS  Google Scholar 

  28. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Yudin, G. & Ivanov, M. Yu. Nonadiabatic tunnel ionization: Looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001)

    Article  ADS  Google Scholar 

  30. Tong, X. M., Zhao, Z. X. & Lin, C. D. Theory of molecular tunneling ionization. Phys. Rev. A 66, 033402 (2002)

    Article  ADS  Google Scholar 

  31. Spanner, M., Smirnova, O., Corkum, P. B. & Ivanov, M. Yu. Reading diffraction images in strong field ionization of diatomic molecules. J. Phys. B 37, L243–L250 (2004)

    Article  ADS  CAS  Google Scholar 

  32. Otobe, T., Yabana, K. & Iwata, J.-I. First-principles calculations for the tunnel ionization rate of atoms and molecules. Phys. Rev. A 69, 053404 (2004)

    Article  ADS  Google Scholar 

  33. Litvinyuk, I. V. et al. Alignment-dependent strong field ionization of molecules. Phys. Rev. Lett. 90, 233003 (2003)

    Article  ADS  CAS  Google Scholar 

  34. Dunn, T. J., Walmsley, I. A. & Mukamel, S. Experimental determination of the quantum mechanical state of a molecular vibrational mode using fluorescence tomography. Phys. Rev. Lett. 74, 884–887 (1995)

    Article  ADS  CAS  Google Scholar 

  35. Skovsen, E., Stapelfeldt, H., Juhl, S. & Mølmer, K. Quantum state tomography of dissociating molecules. Phys. Rev. Lett. 91, 090406 (2003)

    Article  ADS  Google Scholar 

  36. Hankin, S. M., Villeneuve, D. M., Corkum, P. B., & Rayner, D. M. Nonlinear ionization of organic molecules in high intensity laser fields. Phys. Rev. Lett. 84, 5082–5085 (2000)

    Article  ADS  CAS  Google Scholar 

  37. Lee, K. F. et al. Two-pulse alignment of molecules. J. Phys. B 37, L43–L48 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In addition to the NRC, we acknowledge financial support from the National Science and Engineering Research Council, Photonic Research Ontario, the Canadian Institute for Photonic Innovation, the Alexander von Humboldt-Stiftung and the Japan Society for the Promotion of Science. We thank M. Yu. Ivanov, M. Spanner, J. P. Marangos, M. Lein, P. H. Bucksbaum, I. A. Walmsley, D. Jonas, J. Tse and J. G. Underwood for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Villeneuve.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itatani, J., Levesque, J., Zeidler, D. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004). https://doi.org/10.1038/nature03183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03183

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing