Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide survey of protein kinases required for cell cycle progression

Abstract

Cycles of protein phosphorylation are fundamental in regulating the progression of the eukaryotic cell through its division cycle. Here we test the complement of Drosophila protein kinases (kinome) for cell cycle functions after gene silencing by RNA-mediated interference. We observed cell cycle dysfunction upon downregulation of 80 out of 228 protein kinases, including most kinases that are known to regulate the division cycle. We find new enzymes with cell cycle functions; some of these have family members already known to phosphorylate microtubules, actin or their associated proteins. Additionally, depletion of several signalling kinases leads to specific mitotic aberrations, suggesting novel roles for familiar enzymes. The survey reveals the inter-digitation of systems that monitor cellular physiology, cell size, cellular stress and signalling processes with the basic cell cycle regulatory machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell cycle progression after RNAi of protein kinases.
Figure 2: Examples of mitotic phenotypes seen following downregulation by RNAi of selected protein kinases.
Figure 3: Quantitative analysis of mitotic RNAi phenotypes.
Figure 4: New cell cycle roles for Gwl, Fray and Pvr kinases.

Similar content being viewed by others

References

  1. Pines, J. Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res. 66, 181–212 (1995)

    Article  CAS  Google Scholar 

  2. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001)

    Article  CAS  Google Scholar 

  3. Donaldson, M. M., Tavares, A. A., Hagan, I. M., Nigg, E. A. & Glover, D. M. The mitotic roles of Polo-like kinase. J. Cell Sci. 114, 2357–2358 (2001)

    CAS  PubMed  Google Scholar 

  4. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004)

    Article  CAS  Google Scholar 

  5. Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003)

    Article  CAS  Google Scholar 

  7. Kiger, A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003)

    Article  CAS  Google Scholar 

  8. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520 (2002)

    Article  CAS  Google Scholar 

  10. Somma, M. P., Fasulo, B., Cenci, G., Cundari, E. & Gatti, M. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell 13, 2448–2460 (2002)

    Article  CAS  Google Scholar 

  11. Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001)

    Article  CAS  Google Scholar 

  12. Debec, A. & Abbadie, C. The acentriolar state of the Drosophila cell lines 1182. Biol. Cell. 67, 307–311 (1989)

    Article  CAS  Google Scholar 

  13. Nebreda, A. R. & Porras, A. p38 MAP kinases: beyond the stress response. Trends Biochem. Sci. 25, 257–260 (2000)

    Article  CAS  Google Scholar 

  14. Morris, J. Z., Navarro, C. & Lehmann, R. Identification and analysis of mutations in bob, Doa and eight new genes required for oocyte specification and development in Drosophila melanogaster. Genetics 164, 1435–1446 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer, C. A. et al. Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBO J. 19, 4533–4542 (2000)

    Article  CAS  Google Scholar 

  16. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004)

    Article  CAS  Google Scholar 

  17. Kozma, S. C. & Thomas, G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays 24, 65–71 (2002)

    Article  CAS  Google Scholar 

  18. Cherkasova, V. A. & Hinnebusch, A. G. Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2. Genes Dev. 17, 859–872 (2003)

    Article  CAS  Google Scholar 

  19. Carrera, P. et al. Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes Dev. 17, 2578–2590 (2003)

    Article  CAS  Google Scholar 

  20. Tunquist, B. J. & Maller, J. L. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev. 17, 683–710 (2003)

    Article  CAS  Google Scholar 

  21. Maile, T., Kwoczynski, S., Katzenberger, R. J., Wassarman, D. A. & Sauer, F. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304, 1010–1014 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998)

    Article  CAS  Google Scholar 

  23. Lee, L. A. & Orr-Weaver, T. L. Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu. Rev. Genet. 37, 545–578 (2003)

    Article  CAS  Google Scholar 

  24. Wada, T. et al. MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nature Cell Biol. 6, 215–226 (2004)

    Article  CAS  Google Scholar 

  25. Tiainen, M., Vaahtomeri, K., Ylikorkala, A. & Makela, T. P. Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). Hum. Mol. Genet. 11, 1497–1504 (2002)

    Article  CAS  Google Scholar 

  26. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004)

    Article  CAS  Google Scholar 

  27. Donaldson, M. M., Tavares, A. A., Ohkura, H., Deak, P. & Glover, D. M. Metaphase arrest with centromere separation in polo mutants of Drosophila. J. Cell Biol. 153, 663–676 (2001)

    Article  CAS  Google Scholar 

  28. Litchfield, D. W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1–15 (2003)

    Article  CAS  Google Scholar 

  29. Schneeberger, D. & Raabe, T. Mbt, a Drosophila PAK protein, combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 130, 427–437 (2003)

    Article  CAS  Google Scholar 

  30. Cau, J., Faure, S., Comps, M., Delsert, C. & Morin, N. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J. Cell Biol. 155, 1029–1042 (2001)

    Article  CAS  Google Scholar 

  31. Yasuda, S. et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428, 767–771 (2004)

    Article  ADS  CAS  Google Scholar 

  32. Rosenblatt, J., Cramer, L. P., Baum, B. & McGee, K. M. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361–372 (2004)

    Article  CAS  Google Scholar 

  33. Luo, L. et al. Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization. Proc. Natl Acad. Sci. USA 94, 12963–12968 (1997)

    Article  ADS  CAS  Google Scholar 

  34. Tang, T. T., Bickel, S. E., Young, L. M. & Orr-Weaver, T. L. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Dev. 12, 3843–3856 (1998)

    Article  CAS  Google Scholar 

  35. Yu, J. et al. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J. Cell Biol. 164, 487–492 (2004)

    Article  CAS  Google Scholar 

  36. Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003)

    Article  CAS  Google Scholar 

  37. Jones, J. T., Myers, J. W., Ferrell, J. E. & Meyer, T. Probing the precision of the mitotic clock with a live-cell fluorescent biosensor. Nature Biotechnol. 22, 306–312 (2004)

    Article  CAS  Google Scholar 

  38. Logarinho, E. et al. Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells. J. Cell Sci. 117, 1757–1771 (2004)

    Article  CAS  Google Scholar 

  39. Johnson, V. L., Scott, M. I., Holt, S. V., Hussein, D. & Taylor, S. S. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117, 1577–1589 (2004)

    Article  CAS  Google Scholar 

  40. Howell, B. J. et al. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14, 953–964 (2004)

    Article  CAS  Google Scholar 

  41. Fisk, H. A., Mattison, C. P. & Winey, M. Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc. Natl Acad. Sci. USA 100, 14875–14880 (2003)

    Article  ADS  CAS  Google Scholar 

  42. Stucke, V. M., Sillje, H. H., Arnaud, L. & Nigg, E. A. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723–1732 (2002)

    Article  CAS  Google Scholar 

  43. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003)

    Article  CAS  Google Scholar 

  44. Matsumura, F., Totsukawa, G., Yamakita, Y. & Yamashiro, S. Role of myosin light chain phosphorylation in the regulation of cytokinesis. Cell Struct. Funct. 26, 639–644 (2001)

    Article  CAS  Google Scholar 

  45. D'Avino, P., Savoian, M. & Glover, D. Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J. Cell Biol. 5, 61–71 (2004)

    Article  Google Scholar 

  46. Prigent, P., Glover, D. & Giet, R. The Drosophila Nek2 protein kinase is required for centrosome integrity and is able to regulate membrane addition during cytokinesis. Exp. Cell. Res. (in the press)

  47. Bettencourt-Dias, M., Sinka, R., Frenz, L. & Glover, D. M. in Gene Silencing by RNA Interference: Technology and Application (ed. Sohail, M.) (CRC Press, Washington, 2004)

    Google Scholar 

  48. Morrison, D. K., Murakami, M. S. & Cleghon, V. Protein kinases and phosphatases in the Drosophila genome. J. Cell Biol. 150, F57–F62 (2000)

    Article  CAS  Google Scholar 

  49. Remm, M., Storm, C. E. & Sonnhammer, E. L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314, 1041–1052 (2001)

    Article  CAS  Google Scholar 

  50. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK and BBSRC for supporting work in the CR-UK Cell Cycle Genetics Research Group. The BBSRC support was part of a LINK Programme in which the Department of Trade and Industry also provide support for Cyclacel Ltd. An NIH grant supported work in R.W.C.'s group and JSPS funded S.Y. We thank N. B. Carmo, C. Malone and N. Miller for help with experiments. We are grateful to J. C. Pezzullo for his expertise with excel statistical macros and to F. Scaerou, C. Midgley and J. Pereira-Leal for discussions. We also thank T. Hunt, J. Maller and our colleagues, particularly A. Carpenter, M. Segal and M. Savoian for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Bettencourt-Dias or D. M. Glover.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains Supplementary Materials and Methods, Supplementary Tables 1-3, and Supplementary Figs 1 and 2. (PDF 460 kb)

Supplementary Table 4

Includes datasheet used to calculate Mitotic Parameters (before normalization) and instructions on how to use this datasheet. (XLS 264 kb)

Supplementary Table 5

Complete list of Drosophila protein kinases showing cell cycle phenotypes, their putative orthologues and functional information from literature and databases. Shown in alphabetic order and with links to Inparanoid database (for orthologies) and FlyBase (a Database of the Drosophila Genome). (DOC 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettencourt-Dias, M., Giet, R., Sinka, R. et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980–987 (2004). https://doi.org/10.1038/nature03160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03160

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing