Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transposition of hAT elements links transposable elements and V(D)J recombination

Abstract

Transposons are DNA sequences that encode functions that promote their movement to new locations in the genome. If unregulated, such movement could potentially insert additional DNA into genes, thereby disrupting gene expression and compromising an organism's viability. Transposable elements are classified by their transposition mechanisms and by the transposases that mediate their movement. The mechanism of movement of the eukaryotic hAT superfamily elements was previously unknown, but the divergent sequence of hAT transposases from other elements suggested that these elements might use a distinct mechanism. Here we have analysed transposition of the insect hAT element Hermes in vitro. Like other transposons, Hermes excises from DNA via double-strand breaks between the donor-site DNA and the transposon ends, and the newly exposed transposon ends join to the target DNA. Interestingly, the ends of the donor double-strand breaks form hairpin intermediates, as observed during V(D)J recombination, the process which underlies the combinatorial formation of antigen receptor genes. Significant similarities exist in the catalytic amino acids of Hermes transposase, the V(D)J recombinase RAG, and retroviral integrase superfamily transposases, thereby linking the movement of transposable elements and V(D)J recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hermes transposase binds specifically to the ends of Hermes.
Figure 2: Hermes transposition involves hairpin formation on the flanking donor-site DNA.
Figure 3: Hermes transposase joins the 3′ OH end of Hermes-L to a target DNA.
Figure 4: Comparison of recombinase-mediated cleavage and target-joining mechanisms.
Figure 5: Mutation of Hermes DDE residues block DNA cleavage and strand transfer.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Haren, L., Ton-Hoang, B. & Chandler, M. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53, 245–281 (1999)

    Article  CAS  Google Scholar 

  4. Craig, N., Craigie, R., Gellert, M. & Lambowitz, A. Mobile DNA II (ASM, Washington DC, 2002)

    Book  Google Scholar 

  5. Rice, P. A. & Baker, T. A. Comparative architecture of transposase and integrase complexes. Nature Struct. Biol. 8, 302–307 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Rubin, E., Lithwick, G. & Levy, A. A. Structure and evolution of the hAT transposon superfamily. Genetics 158, 949–957 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kunze, R. W. & Weil, C. F. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.) 565–610 (ASM, Washington DC, 2002)

    Book  Google Scholar 

  8. Robertson, H. M. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.) 1093–1110 (ASM, Washington DC, 2002)

    Book  Google Scholar 

  9. Calvi, B. R., Hong, T. J., Findley, S. D. & Gelbart, W. M. Evidence for a common evolutionary origin of inverted repeat transposon in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465–471 (1991)

    Article  CAS  Google Scholar 

  10. Warren, W. D., Atkinson, P. W. & O'Brochta, D. A. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet. Res. 64, 87–97 (1994)

    Article  CAS  Google Scholar 

  11. O'Brochta, D. A., Warren, W. D., Saville, K. J. & Atkinson, P. W. Hermes, a functional non-Drosophilid insect gene vector from Musca domestica. Genetics 142, 907–914 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002)

    Article  CAS  Google Scholar 

  13. Roth, D. B., Menetski, J. P., Nakajima, P. B., Bosma, M. J. & Gellert, M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in SCID mouse thymoctes. Cell 70, 983–991 (1992)

    Article  CAS  Google Scholar 

  14. Okuda, M., Ikeda, K., Namiki, F., Nishi, K. & Tsuge, T. Tfo1: an Ac-like transposon from the plant pathogenic fungus Fusarium oxysporum. Mol. Gen. Genet. 258, 599–607 (1998)

    Article  CAS  Google Scholar 

  15. Sarkar, A. et al. The Hermes element from Musca domestica can transpose in four families of cyclorrhaphan flies. Genetics 99, 15–29 (1997)

    CAS  Google Scholar 

  16. Kennedy, A., Guhathakurta, A., Kleckner, N. & Haniford, D. B. Tn10 transposition via a DNA hairpin intermediate. Cell 95, 125–134 (1998)

    Article  CAS  Google Scholar 

  17. Bhasin, A., Goryshin, I. Y. & Reznikoff, W. S. Hairpin formation in Tn5 transposition. J. Biol. Chem. 274, 37021–37029 (1999)

    Article  CAS  Google Scholar 

  18. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998)

    Article  CAS  Google Scholar 

  19. Agrawal, A., Eastman, O. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998)

    Article  ADS  CAS  Google Scholar 

  20. van Gent, D. C., Mizuuchi, K. & Gellert, M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Kennedy, A. K., Haniford, D. B. & Mizuuchi, K. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 101, 295–305 (2000)

    Article  CAS  Google Scholar 

  22. Mizuuchi, K. & Adzuma, K. Inversion of the phosphate chirality at the target site of the Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66, 129–140 (1991)

    Article  CAS  Google Scholar 

  23. Michel, K., O'Brochta, D. A. & Atkinson, P. W. The C-terminus of the Hermes transposase contains a protein multimerization domain. Insect Biochem. Mol. Biol. 33, 959–970 (2003)

    Article  CAS  Google Scholar 

  24. Namgoong, S. & Harshey, R. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. EMBO J. 17, 3775–3785 (1998)

    Article  CAS  Google Scholar 

  25. Williams, T. L., Jackson, E. L., Carritte, A. & Baker, T. A. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Genes Dev. 13, 2725–2737 (1999)

    Article  CAS  Google Scholar 

  26. Coen, E. S., Carpenter, R. & Martin, C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296 (1986)

    Article  CAS  Google Scholar 

  27. Weil, C. F. & Kunze, R. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nature Genet. 26, 187–190 (2000)

    Article  CAS  Google Scholar 

  28. Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M. R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781–794 (2002)

    Article  CAS  Google Scholar 

  29. Yu, J., Marshall, K., Yamaguchi, M., Haber, J. E. & Weil, C. F. Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 1351–1364 (2004)

    Article  CAS  Google Scholar 

  30. Qiu, J. X., Kale, S. B., Yarnell, S. H. & Roth, D. B. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol. Cell 7, 77–87 (2001)

    Article  CAS  Google Scholar 

  31. Lee, G., Neiditch, M., Salus, S. & Roth, D. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117, 171–184 (2004)

    Article  CAS  Google Scholar 

  32. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  Google Scholar 

  33. Sarnovsky, R., May, E. W. & Craig, N. L. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 15, 6348–6361 (1996)

    Article  CAS  Google Scholar 

  34. Piccirilli, J. A., Vyle, J. S., Caruthers, M. H. & Cech, T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993)

    Article  ADS  CAS  Google Scholar 

  35. Allingham, J., Pribil, P. & Haniford, D. All three residues of the Tn10 transposase DDE catalytic triad function in divalent metal ion binding. J. Mol. Biol. 289, 1195–1206 (1999)

    Article  CAS  Google Scholar 

  36. Brautigam, C. & Steitz, T. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 8, 54–63 (1998)

    Article  CAS  Google Scholar 

  37. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994)

    Article  ADS  CAS  Google Scholar 

  38. McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000)

    Article  CAS  Google Scholar 

  39. Kim, D. R., Dai, Y., Mundy, C. L., Yang, W. & Oettinger, M. A. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13, 3070–3080 (1999)

    Article  CAS  Google Scholar 

  40. Fugmann, S. D., Villey, I. J., Ptaszek, L. M. & Schatz, D. G. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5, 97–107 (2000)

    Article  CAS  Google Scholar 

  41. Landree, M. A., Wibbenmeyer, J. A. & Roth, D. B. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13, 3059–3069 (1999)

    Article  CAS  Google Scholar 

  42. Walbot, V. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.) 533–563 (ASM, Washington DC, 2002)

    Book  Google Scholar 

  43. Sarkar, A. et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol. Genet. Genom. 270, 173–180 (2003)

    Article  CAS  Google Scholar 

  44. Roberts, R. & Cheng, X. Base flipping. Annu. Rev. Biochem. 67, 181–198 (1998)

    Article  CAS  Google Scholar 

  45. Davies, D. R., Braam, L. M., Reznikoff, W. S. & Rayment, I. The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9 Å resolution. J. Biol. Chem. 274, 11904–11913 (1999)

    Article  CAS  Google Scholar 

  46. Ason, B. & Reznikoff, W. S. Mutational analysis of the base flipping event found in Tn5 transposition. J. Biol. Chem. 277, 11284–11291 (2002)

    Article  CAS  Google Scholar 

  47. Huye, L. E., Purugganan, M. M., Jiang, M. M. & Roth, D. B. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22, 3460–3473 (2002)

    Article  CAS  Google Scholar 

  48. Bankhead, T. & Chaconas, G. Mixing active-site components: a recipe for the unique enzymatic activity of a telomere resolvase. Proc. Natl Acad. Sci. USA 101, 13768–13773 (2004)

    Article  ADS  CAS  Google Scholar 

  49. De, P. & Rodgers, K. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol. Rev. 200, 70–82 (2004)

    Article  CAS  Google Scholar 

  50. Lewis, S. M. & Wu, G. E. The origins of V(D)J recombination. Cell 88, 159–162 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Chaconas for sharing his thoughts about hairpin binding pockets before publication. N.L.C. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Craig.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Mitra, R., Atkinson, P. et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001 (2004). https://doi.org/10.1038/nature03157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing