Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for the assembly of a nuclear export complex


The nuclear import and export of macromolecular cargoes through nuclear pore complexes is mediated primarily by carriers such as importin-β. Importins carry cargoes into the nucleus, whereas exportins carry cargoes to the cytoplasm. Transport is orchestrated by nuclear RanGTP, which dissociates cargoes from importins, but conversely is required for cargo binding to exportins. Here we present the 2.0 Å crystal structure of the nuclear export complex formed by exportin Cse1p complexed with its cargo (Kap60p) and RanGTP, thereby providing a structural framework for understanding nuclear protein export and the different functions of RanGTP in export and import. In the complex, Cse1p coils around both RanGTP and Kap60p, stabilizing the RanGTP-state and clamping the Kap60p importin-β-binding domain, ensuring that only cargo-free Kap60p is exported. Mutagenesis indicated that conformational changes in exportins couple cargo binding to high affinity for RanGTP, generating a spring-loaded molecule to facilitate disassembly of the export complex following GTP hydrolysis in the cytoplasm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Two orthogonal views, showing an overview of the structure of the Cse1p:Kap60p:RanGTP complex.
Figure 2: Role of the IBB domain in nuclear export complex formation.
Figure 3: Role of Ran in the export complex.
Figure 4: Mutations that influence the Cse1p:Kap60p:RanGTP complex.


  1. Weis, K. Regulating access to the genome. Nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003)

    Article  CAS  Google Scholar 

  2. Mosammaparast, M. & Pemberton, L. Karyopherins: from nuclear transport mediators to nuclear function regulators. Trends Cell Biol. 14, 547–556 (2004)

    Article  CAS  Google Scholar 

  3. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol. 6, 388–397 (1999)

    Article  CAS  Google Scholar 

  4. Hood, J. K. & Silver, P. A. Cse1p is required for export of Srp1p/importin-α from the nucleus in Saccharomyces cerevisiae. J. Biol. Chem. 273, 35142–35146 (1998)

    Article  CAS  Google Scholar 

  5. Solsbacher, J., Maurer, P., Bischoff, F. R. & Schlenstedt, G. Cse1p is involved in export of yeast importin α from the nucleus. Mol. Cell. Biol. 18, 6805–6815 (1998)

    Article  CAS  Google Scholar 

  6. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997)

    Article  CAS  Google Scholar 

  7. Cingolani, G., Petose, C., Weis, K. & Muller, C. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran·GppNHp. Nature 399, 230–237 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Vetter, I. R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer, A. Structural view of the Ran-Importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999)

    Article  CAS  Google Scholar 

  10. Lee, S. J. et al. The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571–1575 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000)

    Article  CAS  Google Scholar 

  12. Nilsson, J., Weis, K. & Kjems, J. The C-terminal extension of the small GTPase Ran is essential for defining the GDP-bound form. J. Mol. Biol. 318, 583–593 (2002)

    Article  CAS  Google Scholar 

  13. Herold, A., Truant, R., Wiegand, H. & Cullen, B. R. Determination of the functional organization of the importin α nuclear import factor. J. Cell Biol. 143, 309–318 (1998)

    Article  CAS  Google Scholar 

  14. Harreman, M. T. et al. Characterization of the auto-inhibitory sequence within the N-terminal domain of importin α. J. Biol. Chem. 278, 21361–21369 (2003)

    Article  CAS  Google Scholar 

  15. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001)

    Article  CAS  Google Scholar 

  16. Behrens, P., Brinkmann, U. & Wellmann, A. CSE1L/CAS: Its role in proliferation and apoptosis. Apoptosis 8, 39–44 (2003)

    Article  CAS  Google Scholar 

  17. Xiao, Z., McGrew, J. T., Schroeder, A. J. & Fitzgerald-Hayes, M. CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 4691–4702 (1993)

    Article  CAS  Google Scholar 

  18. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998)

    Article  CAS  Google Scholar 

  19. Gorlich, D. et al. A novel class of RanGTP binding proteins. J. Cell Biol. 138, 65–80 (1997)

    Article  CAS  Google Scholar 

  20. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  22. Brunger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 50, 905–921 (1998)

    Article  Google Scholar 

  23. Conti, E. & Kuriyan, J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin α. Struct. Fold. Des. 8, 329–338 (2000)

    Article  CAS  Google Scholar 

  24. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  25. Jones, T. A., Cowan, S. & Kjelgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  26. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  27. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  CAS  Google Scholar 

  28. Matsuura, Y., Lange, A., Harreman, M. T., Corbett, A. H. & Stewart, M. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J. 22, 5358–5369 (2003)

    Article  CAS  Google Scholar 

  29. Askjaer, P. et al. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Mol. Cell. Biol. 19, 6276–6285 (1999)

    Article  CAS  Google Scholar 

Download references


We thank the staff of the European Synchrotron Radiation Facility, especially D. Nurizzo and J. McCarthy, for assistance during data collection, and our colleagues in Cambridge, especially K. Nagai, R. Henderson, R.A. Crowther, P. Evans, A. Leslie and A. Stewart for comments, criticism and assistance. This work was supported in part by a Human Frontier Science Program grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Murray Stewart.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Arrangement of Cse1p HEAT repeats (JPG 168 kb)

Supplementary Figure S1 Legend (DOC 19 kb)

Supplementary Figure S2

Two orthogonal views of superimposition of importin-β, Kap-β2 and Cse1p bound to RanGTP. (JPG 87 kb)

Supplementary Figure S2 Legend (DOC 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matsuura, Y., Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing