Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A humid climate state during the Palaeocene/Eocene thermal maximum

Abstract

An abrupt climate warming of 5 to 10 °C during the Palaeocene/Eocene boundary thermal maximum (PETM) 55 Myr ago is linked to the catastrophic release of 1,050–2,100 Gt of carbon from sea-floor methane hydrate reservoirs1. Although atmospheric methane, and the carbon dioxide derived from its oxidation, probably contributed to PETM warming, neither the magnitude nor the timing of the climate change is consistent with direct greenhouse forcing by the carbon derived from methane hydrate. Here we demonstrate significant differences between marine2,3 and terrestrial4,5,6 carbon isotope records spanning the PETM. We use models of key carbon cycle processes7,8,9 to identify the cause of these differences. Our results provide evidence for a previously unrecognized discrete shift in the state of the climate system during the PETM, characterized by large increases in mid-latitude tropospheric humidity and enhanced cycling of carbon through terrestrial ecosystems. A more humid atmosphere helps to explain PETM temperatures, but the ultimate mechanisms underlying the shift remain unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Marine and terrestrial records of the PETM, correlated to an age model for ODP site 690 (ref. 13, see Supplementary Information).
Figure 2: Results from soil carbon model runs.
Figure 3: Photosynthetic 13C-discrimination by tropical evergreen C3 plants.

Similar content being viewed by others

References

  1. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 (1991)

    Article  ADS  Google Scholar 

  3. Zachos, J. C. et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1551–1554 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Bowen, G. J. et al. in Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming (ed. Gingerich, P. D.) 73–88 (Univ. of Michigan Museum of Paleontology, Ann Arbor, Michigan, 2001)

    Google Scholar 

  5. Bowen, G. J. et al. Mammalian dispersal at the Paleocene/Eocene boundary. Science 295, 2062–2065 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Schmitz, B. & Pujalte, V. Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology 31, 689–692 (2003)

    Article  ADS  Google Scholar 

  7. Farquhar, G. D., Ehleringer, J. R. & Hubrick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989)

    Article  CAS  Google Scholar 

  8. Spero, H. J., Bijma, J., Lea, D. W. & Bemis, B. E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497–500 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Bowen, G. J. & Beerling, D. J. An integrated model for soil organic carbon and CO2: implications for paleosol carbonate pCO2 paleobarometry. Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002117 (2004)

  10. Magioncalda, R., Dupuis, C., Smith, T., Steurbaut, E. & Gingerich, P. D. Paleocene-Eocene carbon isotope excursion in organic carbon and pedogenic carbonate: Direct comparision in a continental stratigraphic section. Geology 32, 553–556 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Schmidt, G. A. & Shindell, D. T. Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates. Paleoceanography 18, doi:10.1029/2002PA000757 (2003)

  12. Renssen, H., Beets, C. J., Fichefet, T., Goosse, H. & Kroon, D. Modeling the climate response to a massive methane release from gas hydrates. Paleoceanography 19, doi:10.1029/2003PA000968 (2004)

  13. Farley, K. A. & Eltgroth, S. F. An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial He-3. Earth Planet. Sci. Lett. 208, 135–148 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Fricke, H. C. & Wing, S. L. Oxygen isotope and paleobotanical estimates of temperature and δ18O - latitude gradients over North America during the Early Eocene. Am. J. Sci. 304, 612–635 (2004)

    Article  ADS  Google Scholar 

  15. Friedman, I. & O'Neil, J. R. in Compilation of Stable Isotope Fractionation Factors of Geochemical Interest (ed. Fleischer, M.) 1–12 (US Geological Survey, Reston, Virginia, 1977)

    Google Scholar 

  16. Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, doi:10.1029/2003PA000908 (2003)

  17. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Schäfer, K. V. R. et al. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Glob. Change Biol. 9, 1378–1400 (2003)

    Article  ADS  Google Scholar 

  19. Macdonald, N. W., Zak, D. R. & Pregitzer, K. S. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci. Soc. Am. J. 59, 233–240 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Cerling, T. E. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71, 229–240 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Bolle, M. P. & Adatte, T. Palaeocene-early Eocene climatic evolution in the Tethyan realm; clay mineral evidence. Clay Miner. 36, 249–261 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Gröcke, D. R., Hesselbo, S. P. & Jenkyns, H. C. Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology 27, 155–158 (1999)

    Article  ADS  Google Scholar 

  23. Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Tu, T. T. N., Kürschner, W. M., Schouten, S. & Van Bergen, P. F. Leaf carbon isotope composition of fossil and extant oaks grown under differing atmospheric CO2 levels. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 199–213 (2004)

    Article  Google Scholar 

  25. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980)

    Article  CAS  Google Scholar 

  26. Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995)

    Article  CAS  Google Scholar 

  27. Granier, A., Biron, P., Bréda, N., Pontallier, J. Y. & Saugier, B. Transpiration of trees and forest stands: short-term and long-term monitoring using sapflow methods. Glob. Change Biol. 2, 265–274 (1996)

    Article  ADS  Google Scholar 

  28. Beerling, D. J. & Quick, W. P. A new technique for estimating rates of carboxylation and electron transport in leaves of C-3 plants for use in dynamic global vegetation models. Glob. Change Biol. 1, 289–294 (1995)

    Article  ADS  Google Scholar 

  29. Sewall, J. O., Sloan, L. C., Huber, M. & Wing, S. Climate sensitivity to changes in land surface characteristics. Glob. Planet. Change 26, 445–465 (2000)

    Article  ADS  Google Scholar 

  30. Koch, P. L., Zachos, J. C. & Dettman, D. L. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 61–89 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Cheng, G. Dickens, D. Schrag, L. Sloan and F. I. Woodward for comments. Funding was provided by a National Science Foundation Biocomplexity grant. G.J.B. was supported by the National Science Foundation Graduate Research Fellowship Program, and D.J.B. gratefully acknowledges funding from the Royal Society and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel J. Bowen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

Contains Supplementary Methods and calculations. (PDF 134 kb)

Supplementary Table 1

Contains Supplementary Table summarizing the results of mass balance calculations of the PETM carbonate ion effect. (PDF 47 kb)

Supplementary Table 2

Contains Supplementary Table summarizing the results of paleosol organic carbon concentration measurements. (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, G., Beerling, D., Koch, P. et al. A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432, 495–499 (2004). https://doi.org/10.1038/nature03115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03115

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing