No cold dust within the supernova remnant Cassiopeia A


A large amount (about three solar masses) of cold (18 K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported1. It was concluded that dust production in type II supernovae can explain how the large quantities ( 108 solar masses) of dust observed2 in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Continuum and molecular line emission from dust and gas.
Figure 2: Large-scale far-infrared emission from dust.
Figure 3: Gas-to-dust correlation.


  1. 1

    Dunne, L., Eales, S., Ivison, R., Morgan, H. & Edmunds, M. Type II supernovae as a significant source of interstellar dust. Nature 424, 285–287 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bertoldi, F. et al. Dust emission from the most distant quasars. Astron. Astrophys. 406, L55–L58 (2003)

    ADS  Article  Google Scholar 

  3. 3

    Wilson, T. L. et al. The molecular gas toward Cassiopeia A. Astron. Astrophys. 280, 221–230 (1993)

    ADS  CAS  Google Scholar 

  4. 4

    Weinreb, S., Barrett, A. H., Meeks, M. L. & Henry, J. C. Radio observations of OH in the interstellar medium. Nature 200, 829–831 (1963)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hughes, D. W. Did Flamsteed see the Cassiopeia-A supernova. Nature 285, 132–133 (1980)

    ADS  Article  Google Scholar 

  6. 6

    Reynoso, E. M. & Goss, W. M. Very Large Array observations of 6 centimeter H2CO in the direction of Cassiopeia A. Astrophys. J. 575, 871–885 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Loinard, L., Lequeux, J., Tilanus, R. & Lagache, P. O. Submillimeter observations of Cassiopeia A. Rev. Mex. Astron. Astrofis. 15, 267–269 (2003)

    Google Scholar 

  8. 8

    Holland, W. S. et al. SCUBA: A common-user submillimetre camera operating on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 303, 659–672 (1999)

    ADS  Article  Google Scholar 

  9. 9

    Rieke, G. H. et al. The Multiband Imaging Photometer for Spitzer. Astrophys. J. Suppl. 154, 25–28 (2004)

    ADS  Article  Google Scholar 

  10. 10

    Lemke, D. et al. ISOPHOT—capabilities and performance. Astron. Astrophys. 315, L64–L70 (1996)

    ADS  Google Scholar 

  11. 11

    Bogun, S. et al. First data from the ISOPHOT FIR Serendipity survey. Astron. Astrophys. 315, L71–L74 (1996)

    ADS  Google Scholar 

  12. 12

    Liszt, H. & Lucas, R. 86 and 140 GHz radiocontinuum maps of the Cassiopeia A SNR. Astron. Astrophys. 347, 258–265 (1999)

    ADS  CAS  Google Scholar 

  13. 13

    Bieging, J. H. & Crutcher, R. M. VLA observations of 1667 MHz OH absorption toward Cassiopeia A. Astrophys. J. 310, 853–871 (1986)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Crutcher, R. M. Nonthermal OH main lines and the abundance of OH in interstellar dust clouds. Astrophys. J. 234, 881–890 (1979)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Harju, J., Winnberg, A. & Wouterloot, J. G. A. The distribution of OH in Taurus Molecular Cloud-1. Astron. Astrophys. 353, 1065–1073 (2000)

    ADS  CAS  Google Scholar 

  16. 16

    Ossenkopf, V. & Henning, Th. Dust opacities for protostellar cores. Astron. Astrophys. 291, 943–959 (1994)

    ADS  CAS  Google Scholar 

  17. 17

    Hines, D. C. et al. Imaging of the Supernova Remnant Cassiopeia A with the Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. 154, 290–293 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Dwek, E. The detection of cold dust in Cassiopeia A: Evidence for the formation of metallic needles in the ejecta. Astrophys. J. 607, 848–854 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Morgan, H. L., Dunne, L., Eales, S. A., Ivison, R. J. & Edmunds, M. G. Cold dust in Kepler's supernova remnant. Astrophys. J. 597, L33–L36 (2003)

    ADS  Article  Google Scholar 

  20. 20

    Blair, W. P. in 1604-2004: Supernovae as Cosmological Lighthouses (eds Turatto, M., Shea, W. R. J., Benetti, S. & Zampieri, L.) (ASP Conf. Ser., Astronomical Society of the Pacific, San Francisco) in the press) also available at 〈

  21. 21

    Rothenflug, R., Magne, B., Chieze, J. P. & Ballet, J. Hydrodynamic model of Kepler's supernova remnant constrained by EINSTEIN and EXOSAT X-ray spectra. Astron. Astrophys. 291, 271–282 (1994)

    ADS  CAS  Google Scholar 

  22. 22

    Kinugasa, K. & Tsunemi, H. ASCA observation of Kepler's supernova remnant. Publ. Astron. Soc. Jpn 51, 239–252 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Arendt, R. G. An infrared survey of Galactic supernova remnants. Astrophys. J. Suppl. 70, 181–212 (1989)

    ADS  Article  Google Scholar 

  24. 24

    Wright, M., Dickel, J., Koralesky, B. & Rudnick, L. The supernova remnant Cassiopeia A at millimeter wavelengths. Astrophys. J. 518, 284–297 (1999)

    ADS  Article  Google Scholar 

Download references


We thank H. Liszt and J. Bieging for making their molecular line observations available to us. This work is based on observations made with the Spitzer Space Telescope and the Infrared Space Observatory, ISO. We acknowledge access to the SCUBA data archive operated by CADC. We thank L. Dunne, H. Morgan, S. Eales and R. Ivison for discussions.

Author information



Corresponding author

Correspondence to Oliver Krause.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krause, O., Birkmann, S., Rieke, G. et al. No cold dust within the supernova remnant Cassiopeia A. Nature 432, 596–598 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing