Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonlinear optics in the extreme ultraviolet

Abstract

Nonlinear responses to an optical field are universal in nature but have been difficult to observe in the extreme ultraviolet (XUV) and soft X-ray regions owing to a lack of coherent intense light sources. High harmonic generation is a well-known nonlinear optical phenomenon1,2 and is now drawing much attention in attosecond pulse generation3,4,5,6. For the application of high harmonics to nonlinear optics in the XUV and soft X-ray regime, optical pulses should have both large pulse energy and short pulse duration to achieve a high optical electric field. Here we show the generation of intense isolated pulses from a single harmonic (photon energy 27.9 eV) by using a sub-10-femtosecond blue laser pulse, producing a large dipole moment at the relatively low (ninth) harmonic order nonadiabatically7,8. The XUV pulses with pulse durations of 950 attoseconds and 1.3 femtoseconds were characterized by an autocorrelation technique, based on two-photon above-threshold ionization9 of helium atoms. Because of the small cross-section for above-threshold ionization10, such an autocorrelation measurement of XUV pulses with photon energy larger than the ionization energy of helium has not hitherto been demonstrated6,11,12,13. The technique can be extended to the characterization of higher harmonics at shorter wavelengths.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: High harmonic pulse generation in the adiabatic picture.
Figure 2: Two-photon above-threshold-ionization (ATI) autocorrelator.
Figure 3: Autocorrelation traces and the spectra of the ninth harmonic of the blue laser.

References

  1. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987)

    ADS  CAS  Article  Google Scholar 

  2. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    ADS  CAS  Article  Google Scholar 

  3. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004)

    ADS  CAS  Article  Google Scholar 

  6. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003)

    ADS  CAS  Article  Google Scholar 

  7. Kondo, K., Tamida, T., Nabekawa, Y. & Watanabe, S. High-order harmonic generation and ionization using ultrashort KrF and Ti:sapphire lasers. Phys. Rev. A. 49, 3881–3889 (1994)

    ADS  CAS  Article  Google Scholar 

  8. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. Generation and propagation of attosecond x-ray pulses in gaseous media. Phys. Rev. A. 57, R2285–R2288 (1998)

    ADS  CAS  Article  Google Scholar 

  9. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free–free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979)

    ADS  CAS  Article  Google Scholar 

  10. Nikolopoulos, L. A. A. & Lambropoulos, P. Multichannel theory of two-photon single and double ionization of helium. J. Phys. B 34, 545–564 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Kobayashi, Y., Sekikawa, T., Nabekawa, Y. & Watanabe, S. 27-fs extreme ultraviolet pulse generation by high-order harmonics. Opt. Lett. 23, 64–66 (1998)

    ADS  CAS  Article  Google Scholar 

  12. Sekikawa, T., Ohno, T., Yamazaki, T., Nabekawa, Y. & Watanabe, S. Pulse compression of a high-order harmonic by compensating the atomic dipole phase. Phys. Rev. Lett. 83, 2564–2567 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Sekikawa, T., Katsura, T., Miura, S. & Watanabe, S. Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating. Phys. Rev. Lett. 88, 193902 (2002)

    ADS  Article  Google Scholar 

  14. Diels, J.-C. & Rudolph, W. Ultrashort Laser Pulse Phenomena (Academic, San Diego, 1996)

    Google Scholar 

  15. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in ‘single-cycle’ regime. Phys. Rev. Lett. 78, 1251–1254 (1997)

    ADS  CAS  Article  Google Scholar 

  16. Sekikawa, T., Kanai, T. & Watanabe, S. Frequency-resolved optical gating of femtosecond pulses in the extreme ultraviolet. Phys. Rev. Lett. 91, 103902 (2003)

    ADS  Article  Google Scholar 

  17. Becker, W., Long, S. & McIver, J. K. Modeling harmonic generation by a zero-range potential. Phys. Rev. A. 50, 1540–1560 (1994)

    ADS  CAS  Article  Google Scholar 

  18. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986)

    Google Scholar 

  19. Antoine, P. et al. Generation of attosecond pulses in macroscopic media. Phys. Rev. A. 56, 4960–4969 (1997)

    ADS  CAS  Article  Google Scholar 

  20. Kanai, T., Zhou, X., Sekikawa, T., Watanabe, S. & Togashi, T. Generation of sub-TW, sub-10 fs violet pulses at 1–5 kHz by broadband frequency doubling. Opt. Lett. 28, 1484–1486 (2003)

    ADS  Article  Google Scholar 

  21. Nabekawa, Y., Kuramoto, Y., Togashi, T., Sekikawa, T. & Watanabe, S. Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser. Opt. Lett. 23, 1384–1386 (1998)

    ADS  CAS  Article  Google Scholar 

  22. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

    ADS  CAS  Article  Google Scholar 

  23. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997)

    ADS  CAS  Article  Google Scholar 

  24. Barty, C. P. J. et al. Regenerative pulse shaping and amplification of ultrabroadband optical pulses. Opt. Lett. 21, 219–221 (1996)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntaro Watanabe.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekikawa, T., Kosuge, A., Kanai, T. et al. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004). https://doi.org/10.1038/nature03108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03108

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing