Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unusual phase transitions in ferroelectric nanodisks and nanorods


Bulk ferroelectrics undergo structural phase transformations at low temperatures, giving multi-stable (that is, multiple-minimum) degenerate states with spontaneous polarization. Accessing these states by applying, and varying the direction of, an external electric field is a key principle for the operation of devices such as non-volatile ferroelectric random access memories1 (NFERAMs). Compared with bulk ferroelectrics, low-dimensional finite ferroelectric structures promise to increase the storage density of NFERAMs 10,000-fold2. But this anticipated benefit hinges on whether phase transitions and multi-stable states still exist in low-dimensional structures. Previous studies have suggested that phase transitions are impossible in one-dimensional systems3,4,5, and become increasingly less likely as dimensionality further decreases3,4,5,6. Here we perform ab initio studies of ferroelectric nanoscale disks and rods of technologically important Pb(Zr,Ti)O3 solid solutions, and demonstrate the existence of previously unknown phase transitions in zero-dimensional ferroelectric nanoparticles. The minimum diameter of the disks that display low-temperature structural bistability is determined to be 3.2 nm, enabling an ultimate NFERAM density of 60 × 1012 bits per square inch—that is, five orders of magnitude larger than those currently available7. Our results suggest an innovative use of ferroelectric nanostructures for data storage, and are of fundamental value for the theory of phase transition in systems of low dimensionality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Toroid moment G and local dipole pattern in PZT disks and rods.
Figure 2: Size dependence of properties of the A and B phases.


  1. 1

    Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  2. 2

    Scott, J. F. & Paz de Araujo, C. A. Ferroelectric memories. Science 246, 1400–1405 (1989)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Landau, L. D. & Lifshitz, E. M. Statistical Physics (Butterworth-Heinemann, Oxford, 2000)

    MATH  Google Scholar 

  4. 4

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Cardy, J. & Jacobsen, J. L. Critical behavior of random-bond Potts models. Phys. Rev. Lett. 79, 4063–4066 (1997)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  6. 6

    Batra, I. P., Wurfel, P. & Silverman, B. D. New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 30, 384–387 (1973)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Kim, S.-H. et al. Scaling issues of Pb(Zr,Ti)O3 capacitor stack for high density FeRAM devices. J. Korean Phys. Soc. 42, S1417–S1419 (2003)

    CAS  Google Scholar 

  8. 8

    Dawber, M., Chandra, P., Littlewood, P. B. & Scott, J. F. Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys. C 15, L393–L398 (2003)

    CAS  Google Scholar 

  9. 9

    Yun, W. S., Urban, J. J., Gu, Q. & Park, H. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447–450 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Fu, H. & Bellaiche, L. Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003)

    ADS  Article  Google Scholar 

  11. 11

    Ahn, C. H. et al. Local nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100–1103 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Meyer, B. & Vanderbilt, D. Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric fields. Phys. Rev. B 63, 205426 (2001)

    ADS  Article  Google Scholar 

  13. 13

    Ghosez, Ph. & Rabe, K. M. Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767–2769 (2000)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Junquera, J. & Ghosez, Ph. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gorbatsevich, A. A. & Kopaev, Yu. V. Toroidal order in crystals. Ferroelectrics 161, 321–334 (1994)

    CAS  Article  Google Scholar 

  16. 16

    Morrison, F. D. et al. Ferroelectric nanotubes. Rev. Adv. Mater. Sci. 4, 114–122 (2003)

    CAS  Google Scholar 

  17. 17

    Zhong, W., Vanderbilt, D. & Rabe, K. M. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861–1864 (1994)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Bellaiche, L., Garcia, A. & Vanderbilt, D. Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys. Rev. Lett. 84, 5427–5430 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Noheda, B. et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kornev, I., Fu, H. & Bellaiche, L. Ultrathin films of ferroelectric solid solutions under residual depolarizing field. Preprint at 〈〉(2004).

  21. 21

    Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Grinberg, I., Cooper, V. R. & Rappe, A. M. Relationship between local structure and phase transitions of disordered solid solution. Nature 419, 909–911 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Edwards, S. F. & Anderson, P. W. Theory of spin glasses. J. Phys. F 5, 965–974 (1975)

    ADS  Article  Google Scholar 

  24. 24

    de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon, Oxford, 1993)

    Google Scholar 

  25. 25

    Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Demczyk, B. G., Rai, R. S. & Thomas, G. Ferroelectric domain structure of lanthanum-modified lead titanate ceramics. J. Am. Ceram. Soc. 73, 615 (1999)

    Article  Google Scholar 

  27. 27

    Meyer, B. & Vanderbilt, D. Ab-initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002)

    ADS  Article  Google Scholar 

  28. 28

    Dubovik, V. et al. Theory of the Curie-Weiss behavior of an aggregated magnetic suspension. J. Magn. Magn. Mater. 150, 105–118 (1995)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Sicron, N. et al. Nature of the ferroelectric phase transition in PbTiO3 . Phys. Rev. B 50, 13168–13180 (1994)

    ADS  CAS  Article  Google Scholar 

Download references


This work was supported by the Office of Naval Research, Center for Piezoelectrics by Design, and the National Science Foundation.

Author information



Corresponding author

Correspondence to Huaxiang Fu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naumov, I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing