Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors


Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic orbital drawings for the carrier transport paths (that is, conduction band bottoms) in crystalline and amorphous semiconductors.
Figure 2: Amorphous IGZO films.
Figure 3: Flexible TTFTs.
Figure 4: Typical TTFT characteristics before and after bending.


  1. Huitema, H. E. A. et al. Plastic transistors in active-matrix displays. Nature 414, 599 (2001)

    ADS  CAS  Article  Google Scholar 

  2. Kagan, C. R. & Andry, P. (eds) Thin Film Transistors (Marcel Dekker, New York, 2003)

  3. Yang, C.-S., Smith, L. L., Arthur, C. B. & Parsons, G. N. Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates. J. Vac. Sci. Technol. B 18, 683–689 (2000)

    CAS  Article  Google Scholar 

  4. Carey, P. G., Smith, P. M., Theiss, S. D. & Wickboldt, P. Polysilicon thin film transistors fabricated on low temperature plastic substrates. J. Vac. Sci. Technol. A 17, 1946–1949 (2000)

    ADS  Article  Google Scholar 

  5. Wang, S. C. et al. Device transfer technology by backside etching for poly-Si thin-film transistors on glass/plastic substrate. Jpn. J. Appl. Phys. 42, 1044–1046 (2003)

    ADS  Article  Google Scholar 

  6. Shaw, J. M. & Seidler, P. F. Organic electronics: Introduction. IBM J. Res. Dev. 45, 3–9 (2001)

    CAS  Article  Google Scholar 

  7. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002)

    CAS  Article  Google Scholar 

  8. Choi, H. Y., Kim, S. H. & Jang, J. Self-organized organic thin-film transistors on plastic. Adv. Mater. 16, 732–736 (2004)

    CAS  Article  Google Scholar 

  9. Lee, J. H. et al. Pentacene thin film transistors fabricated on plastic substrates. Synth. Metals 139, 445–451 (2003)

    CAS  Article  Google Scholar 

  10. Dimitrakopoulos, C. D. & Mascaro, D. J. Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001)

    CAS  Article  Google Scholar 

  11. Taur, Y. & Ning, H. T. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, New York, 1988)

    Google Scholar 

  12. Kuo, Y. (ed.) Thin Film Transistors: Materials and Processes (Kluwer Academic, Dordrecht, 2004)

  13. Thomas, G. Invisible circuits. Nature 389, 907–908 (1997)

    ADS  CAS  Article  Google Scholar 

  14. Kawazoe, H. et al. P-type electrical conduction in transparent thin films of CuAlO2 . Nature 389, 939–942 (1997)

    ADS  CAS  Article  Google Scholar 

  15. Ohta, H. & Hosono, H. Transparent oxide electronics. Mater. Today 7, 42–51 (2004)

    CAS  Article  Google Scholar 

  16. Wager, J. F. Transparent electronics. Science 300, 1245–1246 (2003)

    CAS  Article  Google Scholar 

  17. Hosono, H. Built-in nanostructures in transparent oxides for novel photonic and electronic functions materials. Int. J. Appl. Ceram.Technol 1, 106–118 (2004)

    CAS  Article  Google Scholar 

  18. Madelung, O. (ed.) Technology and Application of Amorphous Silicon (Springer, Berlin, 2000)

  19. Hosono, H. et al. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J. Non-Cryst. Solids 198–200, 165–169 (1996)

    ADS  Article  Google Scholar 

  20. Orita, M. et al. Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): a Zn 4s conductor. Phil. Mag. B 81, 501–515 (2001)

    ADS  CAS  Article  Google Scholar 

  21. Mott, N. F. Silicon dioxide and the chalcogenide semiconductors; similarities and differences. Adv. Phys. 26, 363–391 (1977)

    ADS  CAS  Article  Google Scholar 

  22. Narushima, S. et al. Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdO·GeO2 . Phys. Rev. B 66, 35203 (2002)

    ADS  Article  Google Scholar 

  23. Nomura, K. et al. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Appl. Phys. Lett. 85, 1993–1995 (2004)

    ADS  CAS  Article  Google Scholar 

  24. Nomura, K. et al. Thin film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Kwo, J. et al. Properties of high k gate dielectrics Gd2O3 and Y2O3 for Si. J. Appl. Phys. 89, 3920–3927 (2001)

    ADS  CAS  Article  Google Scholar 

  26. Narushima, S. et al. P-type amorphous oxide semiconductor, ZnRh2O4, and room temperature fabrication of amorphous oxide P-N hetero-junction diodes. Adv. Mater. 15, 1409–1413 (2003)

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hideo Hosono.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nomura, K., Ohta, H., Takagi, A. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing