Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endurance running and the evolution of Homo

Abstract

Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparisons of walking and running.
Figure 2: Comparative ER performance in humans and quadrupeds.
Figure 3: Anatomical comparisons of human, chimpanzee, H. erectus and A. afarensis.
Figure 4: Comparison of stride length (a) and stride rate (b) contributions to running speed in humans21,64, and in quadrupedal mammals (calculated from ref.

Similar content being viewed by others

References

  1. Haile-Selassie, Y. Late Miocene hominids from the Middle Awash, Ethiopia. Nature 412, 178–181 (2001)

    ADS  CAS  PubMed  Google Scholar 

  2. Galik, Y. et al. External and internal morphology of the BAR 1002′00 Orrorin tugenensis femur. Science 305, 1450–1453 (2004)

    ADS  CAS  PubMed  Google Scholar 

  3. Ward, C. V. Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Yb. Physical Anthropol. 35, 185–215 (2002)

    Google Scholar 

  4. Aiello, L. & Dean, M. C. An Introduction to Human Evolutionary Anatomy (Academic, London, 1990)

    Google Scholar 

  5. Rose, M. D. in Origine(s) de la Bipédie chez les Hominides (eds Coppens, Y. & Senut, B.) 37–49 (CNRS, Paris, 1991)

    Google Scholar 

  6. Jungers, W. L. Relative joint size and hominid locomotor adaptations with implications for the evolution of hominid bipedalism. J. Hum. Evol. 17, 247–265 (1988)

    Google Scholar 

  7. Ruff, C. B. et al. in Primate Locomotion: Recent Advances (ed. Strasser, E.) 449–469 (Plenum, New York, 1998)

    Google Scholar 

  8. Wood, B. & Collard, M. The human genus. Science 284, 65–71 (1999)

    CAS  PubMed  Google Scholar 

  9. Carrier, D. R. The energetic paradox of human running and hominid evolution. Curr. Anthropol. 25, 483–495 (1984)

    Google Scholar 

  10. Heinrich, B. Why We Run: A Natural History (Harper Collins, New York, 2002)

    Google Scholar 

  11. Garland, T. Jr. The relation between maximal running speed and body-mass in terrestrial mammals. J. Zool. 199, 157–170 (1983)

    Google Scholar 

  12. Taylor, C. R., Heglund, N. C. & Maloiy, G. M. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97, 1–21 (1982)

    CAS  PubMed  Google Scholar 

  13. Pennycuick, C. J. in Serengeti: Dynamics of an Ecosystem (eds Sinclair, A. R. E. & Norton-Griffiths, M.) 164–184 (Univ. Chicago Press, Chicago, 1979)

    Google Scholar 

  14. Holekamp, K. E., Boydston, E. E. & Smale, E. in How and Why Animals Travel in Groups (eds Boinski, S. & Garber, P.) 587–627 (Univ. Chicago Press, Chicago, 2000)

    Google Scholar 

  15. Alexander, R. M. Optimum walking techniques for quadrupeds and bipeds. J. Zool. Lond. 192, 97–117 (1980)

    Google Scholar 

  16. Margaria, R., Cerretelli, P., Aghemo, P. & Sassi, G. Energy cost of running. J. Appl. Physiol. 18, 367–370 (1963)

    CAS  PubMed  Google Scholar 

  17. Alexander, R. M. Energy-saving mechanisms in walking and running. J. Exp. Biol. 160, 55–69 (1991)

    CAS  PubMed  Google Scholar 

  18. Cavagna, G. A., Thys, H. & Zamboni, A. The sources of external work in level walking and running. J. Physiol. Lond. 262, 639–657 (1976)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ker, R. F. et al. The spring in the arch of the human foot. Nature 325, 147–149 (1987)

    ADS  CAS  PubMed  Google Scholar 

  20. Farley, C. T., Glasheen, J. & McMahon, T. A. Running and springs: speed and animal size. J. Exp. Biol. 185, 71–86 (1993)

    CAS  PubMed  Google Scholar 

  21. Cavanagh, P. R. & Kram, R. Stride length in distance running: velocity, body dimensions, and added mass effects. Med. Sci. Sports Exerc. 21, 467–479 (1989)

    CAS  PubMed  Google Scholar 

  22. Hunt, K. D. Mechanical implications of chimpanzee positional behavior. Am. J. Phys. Anthropol. 86, 521–536 (1991)

    CAS  PubMed  Google Scholar 

  23. Isbell, L. A. et al. Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): implications for the evolution of long hindlimb length in Homo. Am. J. Phys. Anthropol. 105, 199–207 (1998)

    CAS  PubMed  Google Scholar 

  24. Alexander, R. M., Jayes, A. S. & Ker, R. F. Estimates of energy cost for quadrupedal running gaits. J. Zool. Lond. 190, 155–192 (1980)

    Google Scholar 

  25. Heglund, N. C. & Taylor, C. R. Speed, stride frequency and energy cost per stride. How do they change with body size and gait? J. Exp. Biol. 138, 301–318 (1988)

    CAS  PubMed  Google Scholar 

  26. Hoyt, D. F. & Taylor, C. R. Gait and the energetics of locomotion in horses. Nature 292, 239–240 (1981)

    ADS  Google Scholar 

  27. Minetti, A. E. Physiology: efficiency of equine express postal systems. Nature 426, 785–786 (2003)

    ADS  CAS  PubMed  Google Scholar 

  28. National Center for Chronic Disease Prevention and Health Promotion. Participation in Physical Activities: Adults Aged 18 and Over (National Health Information Survey, 1998, now age-adjusted to 2000 population); 〈http://www.cdc.gov/nccdphp/dnpa/physical/stats/pasports.htm〉.

  29. Taylor, C. R. & Rowntree, V. J. Running on two or on four legs: which consumes more energy? Science 179, 186–187 (1973)

    ADS  CAS  PubMed  Google Scholar 

  30. Thorpe, S. K. et al. Dimensions and moment arms of the hind- and forelimb muscles of common chimpanzees (Pan troglodytes). Am. J. Phys. Anthropol. 110, 179–199 (1999)

    CAS  PubMed  Google Scholar 

  31. Swindler, D. R. & Wood, C. D. An Atlas of Primate Gross Anatomy: Baboon, Chimpanzee and Man (Univ. Washington Press, Seattle, 1973)

    Google Scholar 

  32. Susman, R. L., Stern, J. T. & Jungers, W. L. Arboreality and bipedality in the Hadar hominids. Folia Primatol. 43, 113–156 (1984)

    CAS  Google Scholar 

  33. Latimer, B. & Lovejoy, C. O. The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. Am. J. Phys. Anthropol. 78, 369–386 (1989)

    CAS  PubMed  Google Scholar 

  34. Stern, J. T. & Susman, R. L. The locomotor anatomy of Australopithecus afarensis. Am. J. Phys. Anthropol. 60, 279–317 (1983)

    PubMed  Google Scholar 

  35. Clarke, R. J. & Tobias, P. V. Sterkfontein Member 2 foot bones of the oldest South African hominid. Science 269, 521–524 (1995)

    ADS  CAS  PubMed  Google Scholar 

  36. Harcourt-Smith, W. E. H. Form and Function in the Hominoid Tarsal Skeleton Thesis, Univ. College London (2002)

    Google Scholar 

  37. Lewis, O. J. Functional Morphology of the Evolving Hand and Foot (Oxford Univ. Press, Oxford, 1989)

    Google Scholar 

  38. Reynolds, T. R. Stride length and its determinants in humans, early hominids, primates, and mammals. Am. J. Phys. Anthropol. 72, 101–115 (1987)

    CAS  PubMed  Google Scholar 

  39. Kram, R. & Taylor, C. R. Energetics of running: a new perspective. Nature 346, 265–267 (1990)

    ADS  CAS  PubMed  Google Scholar 

  40. Haeusler, M. & McHenry, H. M. Body proportions of Homo habilis reviewed. J. Hum. Evol. 46, 433–465 (2004)

    PubMed  Google Scholar 

  41. Myers, M. J. & Steudel, K. Effect of limb mass and its distribution on the energetic cost of running. J. Exp. Biol. 116, 363–373 (1985)

    CAS  PubMed  Google Scholar 

  42. Zihlman, A. L. & Brunker, L. Hominid bipedalism: then and now. Yb. Physical Anthropol. 22, 132–162 (1979)

    Google Scholar 

  43. Mero, A., Jaakkola, L. & Komi, P. V. Relationships between muscle fibre characteristics and physical performance capacity in trained athletic boys. J. Sports Sci. 9, 161–171 (1991)

    CAS  PubMed  Google Scholar 

  44. Yang, N. et al. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 73, 627–631 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Keller, T. S. et al. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin. Biomech. 11, 253–259 (1996)

    CAS  Google Scholar 

  46. Rose, M. D. A hominine hip bone, KNM-ER 3228, from East Lake Turkana, Kenya. Am. J. Phys. Anthropol. 63, 371–378 (1984)

    CAS  PubMed  Google Scholar 

  47. Sanders, W. J. Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J. Hum. Evol. 34, 249–302 (1998)

    CAS  PubMed  Google Scholar 

  48. Biewener, A. A. & Taylor, C. R. Bone strain: a determinant of gait and speed? J. Exp. Biol. 123, 383–400 (1986)

    CAS  PubMed  Google Scholar 

  49. Hinrichs, R. N. in Biomechanics of Distance Running (ed. Cavanagh, P. R.) 107–133 (Human Kinetics Books, Champaign, Illinois, 1990)

    Google Scholar 

  50. McLay, I. S., Lake, M. J. & Cavanagh, P. R. in Biomechanics of Distance Running (ed. Cavanagh, P. R.) 165–186 (Human Kinetics Books, Champaign, Illinois, 1990)

    Google Scholar 

  51. Jellema, L. M., Latimer, B. & Walker, A. in The Nariokotome Homo erectus Skeleton (eds Walker, A. & Leakey, R. E. F.) 294–325 (Harvard Univ. Press, Cambridge, 1993)

    Google Scholar 

  52. Aiello, L. & Wheeler, P. The expensive tissue hypothesis: the brain and digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995)

    Google Scholar 

  53. Spoor, F., Wood, B. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994)

    ADS  CAS  PubMed  Google Scholar 

  54. Bianchi, M. The thickness, shape and arrangement of the elastic fibres within the nuchal ligament from various animal species. Anat. Anz. Jena 169, 53–66 (1989)

    CAS  Google Scholar 

  55. Wheeler, P. E. The thermoregulatory advantages of hominid bipedalism in open equatorial environments: the contribution of increased convective heat loss and cutaneous evaporative cooling. J. Hum. Evol. 21, 107–115 (1991)

    Google Scholar 

  56. Ruff, C. B. Climate and body shape in hominid evolution. J. Hum. Evol. 21, 81–105 (1990)

    Google Scholar 

  57. Falk, D. Brain evolution of Homo: the radiator theory. Behav. Brain Sci. 13, 333–381 (1990)

    Google Scholar 

  58. Cabanac, M. & Caputa, M. Natural selective cooling of the human brain: evidence of its occurrence and magnitude. J. Physiol. Lond. 286, 255–264 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Niinimaa, V., Cole, P., Mintz, S. & Shephard, R. J. The switching point from nasal to oronasal breathing. Resp. Physiol. 42, 61–71 (1981)

    Google Scholar 

  60. Semaw, S. et al. 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J. Hum. Evol. 45, 169–177 (2003)

    PubMed  Google Scholar 

  61. Nabokov, P. Indian Running: Native American History and Tradition (Ancient City, Santa Fe, New Mexico, 1987)

    Google Scholar 

  62. O'Connell, J. F., Hawkes, K. & Blurton-Jones, N. G. Hadza scavenging: implications for Plio-Pleistocene hominid subsistence. Curr. Anthropol. 29, 356–363 (1988)

    Google Scholar 

  63. Wrangham, R. W. et al. The raw and the stolen: cooking and the ecology of human origins. Curr. Anthropol. 5, 567–594 (1999)

    Google Scholar 

  64. Muybridge, E. The Human Figure in Motion (Dover, New York, 1985)

    Google Scholar 

  65. Walker, A. & Leakey, R. E. F. The Nariokotome Homo erectus skeleton (Harvard Univ. Press, Cambridge, 1993)

    Google Scholar 

  66. Lovejoy, O. Evolution of human walking. Sci. Am. 259, 118–125 (1988)

    ADS  CAS  PubMed  Google Scholar 

  67. Dillman, C. J. Kinematic analyses of running. Exercise Sports Sci. Rev. 3, 193–218 (1975)

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Biewener, D. Carrier, W. Harcourt-Smith, F. Jenkins, Jr, J. McGrath, D. Pilbeam, J. Polk, H. Pontzer and R. Wrangham for discussion and comments on the manuscript. Funding was provided by the American School of Prehistoric Research; illustrations in Fig. 4 were rendered by L. Meszoly. D.M.B. and D.E.L. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dennis M. Bramble or Daniel E. Lieberman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramble, D., Lieberman, D. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004). https://doi.org/10.1038/nature03052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03052

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing