Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge

A Corrigendum to this article was published on 02 December 2004

Abstract

The origin of the isotopic signature of Indian mid-ocean ridge basalts has remained enigmatic, because the geochemical composition of these basalts is consistent either with pollution from recycled, ancient altered oceanic crust and sediments, or with ancient continental crust or lithosphere. The radiogenic isotopic signature may therefore be the result of contamination of the upper mantle by plumes containing recycled altered ancient oceanic crust and sediments1, detachment and dispersal of continental material into the shallow mantle during rifting and breakup of Gondwana2, or contamination of the upper mantle by ancient subduction processes3,4. The identification of a process operating on a scale large enough to affect major portions of the Indian mid-ocean ridge basalt source region has been a long-standing problem. Here we present hafnium and lead isotope data from across the Indian–Pacific mantle boundary at the Australian–Antarctic discordance region of the Southeast Indian Ridge, which demonstrate that the Pacific and Indian upper mantle basalt source domains were each affected by different mechanisms. We infer that the Indian upper-mantle isotope signature in this region is affected mainly by lower continental crust entrained during Gondwana rifting, whereas the isotope signature of the Pacific upper mantle is influenced predominantly by ocean floor subduction-related processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional setting of the AAD along the SEIR between Australia and Antarctica, schematic tectonic summary, and sample dredge locations.
Figure 2: The ɛHf, ɛNd and 206Pb/204Pb variations of MORB from the AAD region of the SEIR.
Figure 3: Contrasting Δ208Pb and ɛHf isotopic variations for MORB from the AAD (this work) and the Indian Ocean basin21 in general, versus the Pacific Ocean basin21.

Similar content being viewed by others

References

  1. Storey, M. et al. Contamination of the Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume. Nature 338, 574–576 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Arndt, N. T. & Goldstein, S. L. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161, 210–212 (1989)

    Article  ADS  Google Scholar 

  3. Kempton, P. D., Pierce, J. A., Barry, T. L., Langmuir, C. & Christie, D. M. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic discordance and origin of the Indian MORB source. Geochem. Geophys. Geosyst. 3, doi:10.1029/2002GC000320 (2002)

  4. Rehkämper, M. & Hofmann, A. W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 147, 93–106 (1997)

    Article  ADS  Google Scholar 

  5. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Zindler, A. & Hart, S. R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Allègre, C. J., Hamelin, B., Provost, A. & Dupré, B. Topology in isotopic mutlispace and the origin of mantle chemical heterogeneities. Earth Planet. Sci. Lett. 81, 319–337 (1986/87)

    Article  ADS  Google Scholar 

  8. Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984)

    Article  ADS  CAS  Google Scholar 

  10. Hamelin, B. & Allègre, C.-J. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature 315, 196–199 (1985)

    Article  ADS  CAS  Google Scholar 

  11. Mahoney, J. J., Nicollet, C. & Dupuy, C. Madagascar basalts: tracking oceanic and continental sources. Earth Planet. Sci. Lett. 104, 350–363 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Mahoney, J. J., White, W. M., Upton, B. G. J., Neal, C. R. & Scrutton, R. A. Beyond EM-1: lavas from Afanasy-Nikitin rise and the Crozet archipelago, Indian Ocean. Geology 24, 615–618 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Pearson, D. G. et al. Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374, 711–713 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Pyle, D. G., Christie, D. M. & Mahoney, J. J. Resolving an isotope boundary within the Australian-Antarctic discordance. Earth Planet. Sci. Lett. 112, 161–178 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Pyle, D. G., Christie, D. M., Mahoney, J. J. & Duncan, R. A. Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor. J. Geophys. Res. 100, 22261–22282 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Christie, D. M., West, B. P., Pyle, D. G. & Hanan, B. B. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature 394, 637–644 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Hanan, B. B., Blichert-Toft, J., Christie, D. M. & Albaréde, F. Ultra-depleted hafnium isotopes from Australian-Antarctic discordance MORB. J. Conf. Abstr. 5(2), 478–479 (2000)

    Google Scholar 

  18. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Weaver, B. L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–397 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Wendt, J. I., Regelous, M., Niu, Y., Hekinian, R. & Collerson, K. D. Geochemistry of lavas from the Garrett transform fault; insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet. Sci. Lett. 173, 271–284 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Chauvel, C. & Blichert-Toft, J. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett. 190, 137–151 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Salters, V. J. M. et al. Hf isotope constraints on mantle evolution Geochemical Earth Reference Model (GERM). Chem. Geol. 145, 447–460 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Salters, V. J. M. & Dick, H. J. B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Hart, S. R., Gerlach, D. C. & White, W. M. A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochim. Cosmochim. Acta 50, 1551–1557 (1986)

    Article  ADS  CAS  Google Scholar 

  25. Rudnick, R. L. & Goldstein, S. L. The Pb isotopic compositions of lower crustal xenoliths and evolution of lower crustal Pb. Earth Planet. Sci. Lett. 98, 192–207 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Vervoort, J. D. et al. Hf-Nd isotopic evolution of the lower crust. Earth Planet. Sci. Lett. 181, 115–129 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Ben Othman, D., White, W. M. & Patchett, P. J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 94, 1–21 (1989)

    Article  ADS  CAS  Google Scholar 

  28. Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albarede, F. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79–99 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Scherer, E. E. et al. Lu-Hf geocheonology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chem. Geol. 142, 63–78 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Gurnis, M., Mueller, R. D. & Moresi, L. Cretaceous vertical motion of Australia and the Australian-Antarctic discordance. Science 279, 1499–1504 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Kamenetsky, V. S. et al. Remnants of Gondwanan continental lithosphere in oceanic upper mantle; evidence from the South Atlantic Ridge. Geology 29, 243–246 (2001)

    Article  ADS  CAS  Google Scholar 

  32. Soffer, G., Goldstein, S. L., Graham, D. W., Langmuir, C. H. & Michael, P. J. An arctic mantle domain boundary: Evidence from the Gakkel Ridge. Geochem. Cosmochim. Acta 68, A692 (2004)

    Google Scholar 

Download references

Acknowledgements

We are grateful for comments from D. Graham. We thank P. Télouk for help with the Plasma 54. This work was supported by the National Science Foundation and the Institut National des Sciences de l'Univers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry B. Hanan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

Hf, Nd, and Pb isotopic compositions and latitude and longitude of MORB from the Australian–Antarctic discordance, Southeast Indian Ridge. Includes legend. (DOC 145 kb)

Supplementary Figure 1

Longitude versus εHf and Δ208Pb for MORB from the Australian–Antarctic discordance, Southeast Indian Ridge. Includes legend. (PDF 33 kb)

Supplementary Data 1

Supplementary references for the Hf, Nd, and Pb isotopic compositions and latitude and longitude of MORB from the Supplementary Table legend. (DOC 20 kb)

Supplementary Data 2

Supplementary references for schematic tectonics shown in Figure 1a. (DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanan, B., Blichert-Toft, J., Pyle, D. et al. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004). https://doi.org/10.1038/nature03026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03026

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing