Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optically programmable electron spin memory using semiconductor quantum dots

Abstract

The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer1,2,3. Semiconductor quantum dots fabricated by strain driven self-assembly4 are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned5, electronically coupled6 and embedded into active devices7,8,9,10. It has been predicted that the atomic-like electronic structure4 of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment11,12,13,14, thus protecting the ‘spin’ quantum information against decoherence15,16. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of devices and operation principle.
Figure 2: Spin storage spectra for T = 10 K, high magnetic field B = 8 T and a short storage time of Δt = 1 µs.
Figure 3: Electron spin dynamics at T = 1 K and B = 8 T for storage times up to 1 ms.
Figure 4: Double logarithmic plot of the spin lifetime T1 versus the magnetic field at T = 1 K.

References

  1. Loss, D. & DiVincenzo, D. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    ADS  CAS  Article  Google Scholar 

  2. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 119–120 (1998)

    Article  Google Scholar 

  3. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    ADS  CAS  Article  Google Scholar 

  4. Arakawa, Y. & Tarucha, S. (eds) Proc. 2nd Int. Conf. on Semiconductor Quantum Dots (QD 2002), Physica Status Solidi B 238 229–372, (2003)

  5. Heidemeyer, H., Denker, U., Müller, C. & Schmidt, O. G. Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. Phys. Rev. Lett. 91, 196103 (2003)

    ADS  CAS  Article  Google Scholar 

  6. Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Oulton, R. et al. Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot. Phys. Rev. B 66, 045313 (2002)

    ADS  Article  Google Scholar 

  9. Hanson, R., Witkamp, B., Vandersypen, L. M. K., Willems van Beveren, L. H. & Elzerman, J. M. Zeeman energy and spin relaxation in a one-electron quantum dot. Phys. Rev. Lett. 91, 196802 (2002)

    ADS  Article  Google Scholar 

  10. Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y. & Tarucha, S. Nonequilibrium transport through a vertical quantum dot in the absence of spin-flip energy relaxation. Phys. Rev. Lett. 88, 236802 (2002); Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature 419, 278 (2002)

    ADS  CAS  Article  Google Scholar 

  11. Meier, F. & Zakharchenya, B. (eds) Modern Problems in Condensed Matter Sciences Vol. 8, Optical Orientation (North Holland, Amsterdam, 1984)

  12. Khaetskii, A. V. & Nazarov, Y. V. Spin relaxation in semiconductor quantum dots. Phys. Rev. B 61, 12639–12642 (2000)

    ADS  CAS  Article  Google Scholar 

  13. Khaetskii, A. V. & Nazarov, Y. V. Spin flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 64, 125316 (2001)

    ADS  Article  Google Scholar 

  14. Woods, L. M., Reinecke, T. L. & Lyanda-Geller, Y. Spin relaxation in quantum dots. Phys. Rev. B 66, 161318 (2002)

    ADS  Article  Google Scholar 

  15. Gupta, J. A., Awschalom, D. D., Peng, X. & Alivisatos, A. P. Spin coherence in semiconductor quantum dots. Phys. Rev. B 59, R10421–R10424 (1999)

    ADS  CAS  Article  Google Scholar 

  16. Golovach, V. N., Khaetskii, A. V. & Loss, D. Phonon induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004)

    ADS  Article  Google Scholar 

  17. Kroutvar, M. et al. Wavelength selective charge storage in self-assembled InGaAs/GaAs quantum dots. Appl. Phys. Lett. 83, 443–445 (2003)

    ADS  CAS  Article  Google Scholar 

  18. Finley, J. J. et al. Electrical detection of optically induced charge storage in self-assembled InAs quantum dots. Appl. Phys. Lett. 73, 2618–2620 (1998)

    ADS  CAS  Article  Google Scholar 

  19. Finley, J. J. et al. Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots. Phys. Rev. B 63, 073307 (2001)

    ADS  Article  Google Scholar 

  20. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002)

    ADS  Article  Google Scholar 

  21. Langbein, W. et al. Control of fine-structure splitting and biexciton binding in InxGa1–xAs quantum dots by annealing. Phys. Rev. B 69, 161301 (2004)

    ADS  Article  Google Scholar 

  22. Oulton, R. et al. Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots. Phys. Rev. B 68, 235301 (2003)

    ADS  Article  Google Scholar 

  23. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin evolution induced by interaction with nuclei in a quantum dot. Phys. Rev. B 67, 195329 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Golovach and D. Loss for discussions. We also thank the DFG for financial support and Attocube GmbH for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Finley.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kroutvar, M., Ducommun, Y., Heiss, D. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004). https://doi.org/10.1038/nature03008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03008

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing